建设项目环境影响报告表

(污染影响类)

项目名称: <u>岫岩满族自治县安民废机油回收有限公</u>司年回收 500 吨废旧机油项目

建设单位(盖章): 岫岩满族自治县安民废旧机油

回收有限公司

编制日期: ____2023年2月_____

中华人民共和国生态环境部制

编制单位和编制人员情况表

项目编号		iky325		
建设项目名称		岫岩满族自治县安民废	机油回收有限公司年回收	500吨废旧机油项
建设项目类别		47-101危险废物(不含	医疗废物)利用及处置	d
环境影响评价	文件类型	报告表		
一、建设单位	情况	THE D	,	45 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -
单位名称(盖)	章)	岫岩满族自治县安民废	机油回收有限公司	
统一社会信用	代码	91210322M A C OPH YB89		
法定代表人(签章)	高大春	EJ X	
主要负责人(名	签字)	高大春	1327 L T	
直接负责的主管	管人员 (签字)	高大春	高人春.	
二、编制单位情况		人程咨询		
单位名称(盖重	章)	辽宁瑞尔工程咨询有限公	公司	
统一社会信用作	弋码	9121030066456508	D> 211	
三、编制人员	情况	T.S.	03110042984	
1. 编制主持人				
姓名	职业资	香格证书管理号	信用编号	签字
张策	2016035210	352014211501000360	ВН 036362	363
2. 主要编制人	. 员	-		
姓名	主	要编写内容	信用编号	签字
张策	析,区域环境,标及评价标准,措施,环境保	情况,建设项目工程分 质量现状,环境保护目 主要环境影响和保护 护措施监督检查清单 树表,附图,附件	ВН 036362	建

一、建设项目基本情况

建设项目名称	岫岩满族自治县安民废机油回收有限公司年回收 500 吨废旧机油			
项目代码	2210-210323-04-05-344703			
建设单位联系人	高大春	联系方式	15998069111	
建设地点	鞍山市山	岫岩满族自治县龙潭	镇相荣村小堡组	
地理坐标	(123度	<u>7</u> 分 <u>21.442</u> 秒, <u>40</u> 度	8 分 13.159 秒)	
国民经济 行业类别	N7724 危险废物治 理	建设项目 行业类别	47-101 危险废物(不含医疗 废物)利用及处置	
建设性质	☑新建(迁建)□改建□扩建□技术改造	建设项目 申报情形	☑首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目	
项目审批(核准/ 备案)部门(选填)	岫岩满族自治县发 展和改革局	项目审批(核准/ 备案)文号(选填)	岫发改备[2022]204 号	
总投资 (万元)	80.00	环保投资 (万元)	14.55	
环保投资占比(%)	18.2	施工工期	3.0 月	
是否开工建设	☑否 □是:	用地(用海) 面积(m²)	600(租用)	
专项评价设置情况	无			
规划情况				
规划环境影响 评价情况				
规划及规划环境 影响评价符合性分析		无		

其

他

符

合

性

分七

1、产业政策符合性分析

根据《国民经济行业分类》(GBT4754-2017),本项目对废机油进行收集储存,属于 N7724 危险废物治理,根据国家发展和改革委员会发布的《产业结构调整指导目录》(2021 修订本)本项目不在鼓励类、限制类和淘汰类之内,为允许建设项目。综上,本项目符合国家相关产业政策。

2、《危险废物收集贮存运输技术规范》相符性分析

本项目为废机油回收贮存项目,根据《危险废物收集贮存运输技术规范》 (HJ2025-2012)要求,本项目只针对其收集、贮存、运输进行符合性分析,具体分析如下表。

表 1 与《危险废物收集贮存运输技术规范》(HJ2025-2012)相符性

项目	规范要求	核对本项目具体情况	符合性 分析
	从事危险废物收集、贮存、运输经营活动的单位应具有危险废物经营许可证。在收集、贮存、运输危险废物时,应根据危险废物收集、贮存、处置经营许可证核发的有关规定建立相应的规章制度和污染防治措施,包括危险废物分类管理制度、安全管理制度、污染防治措施等。	本项目为废机油回收中转暂存行业,现处于环评阶段,下一步按规定开展验收和危险废物经营申办工作;在收集、贮存、运输时,根据废机油收集、贮存、处置经营许可证改发的有关规定建立规章制度和污染防治措施,包括危险废物分类管理制度、安全管理制度、污染防治措施等。	符合
	危险废物专营过程应按《危险废物转 移管理办法》执行。	本项目严格执行《危险废物转移管 理办法》制度。	符合
总 体 要求	危险废物收集、贮存、运输单位应建 立规范的管理制度和技术人员培训 制度,定期针对管理和技术人员进行 培训。培训内容至少包括危险废物鉴 别要求、危险废物经营许可证管理、 危险废物转移管理办法、危险废物包 装盒标识、危险废物运输要求、危险 废物事故应急方法等。	本项目建成运营后,建设单位将建立健全相关制度,定期针对管理和技术人员进行培训,培训内容关于危废鉴别、运输、危险废物事故应急方法等多方面。	符合
	危险废物收集、贮存、运输单位应编制应急预案。应急预案编制可参照《危险废物经营单位编制应急预案指南》。设计运输的相关内容还应符合交通行政主管部门的有关规定。针对危险事故发生收集、贮存事故发生过程中的事故发生环节应定期组织应急演练。	本项目建成运营后,建设单位将参考《危险废物经营单位编制应急预案指南》编制完善应急预案。同时,针对危险废物收集、贮存、运输过程中的事故易发环节定期组织应急演练。	符合

	T		1
	危险废物收集、贮存、运输过程中一旦发生意外事故、收集、贮存、运输单位及相关部门应根据风险程度采取如下措施: (1)设立事故警戒线,启动应急预案,并按《环境保护行政主管部门突发环境事件信息报告办法(试行)》(环发[2006]50号)要求进行报告。 (2)若造成事故的危险废物具有剧毒性,易燃性、爆炸性或高传染性,应立即疏散人群,并请求环境保护、消防、医疗、公安等相关部门支援。 (3)对事故现场受到污染的土壤和修复。 (4)清理过程中产生的所有废物均应按危险废物进行管理和处置。 (4)清理过程中产生的所有废物均应按危险废物进行管理和处置。 (5)进入现场清理和包装危险废物的人员应受过专业培训,穿着防护服,并佩戴相应的防护用具。	本项目严格落实风险管控制度,一旦发生意外事故,将立刻启动应急预案,对受到污染的土壤和水体等环境介质进行相应的清理和修复,清理过程中产生的所有废物按危险废物进行管理和处置,进入现场清理和包装危险废物的人员均进行专业培训,穿着防护服,并佩戴相应的防护用具。	符合
	危险废物收集、贮存、运输时应按腐蚀性、毒性、易燃性、反应性和感染性等危险特性对危险废物进行分类、包装并设置相关的标志及标签。危险废物特性应根据其产生源特性及GB5085.1-7、H/T298 进行鉴别。	本项目仅收集废机油, 收集的油桶 包装设置相应的标志及标签。	符合
	在危险废物的收集和运转过程中,应 采取相应的安全防护和污染防治措施,包括防爆、防火、防中毒、防感 染、防泄漏、防飞扬、防雨或其他防 治污染环境的措施。	本项目建成运营后,单位将在收集 和转运过程中,采取安全防护和污 染防治措施,包括防爆、防火、防 中毒、防感染、防泄漏、防飞扬、 防雨或其他防治污染环境的措施。	符合
收集	危险废物收集时应根据危险废物的种类、数量、危险特性、物理形态、运输要求等因素确定包装形式,具体包装应符合如下要求: (1)包装材质要与危险废物相容,可根据废物特性选择钢、铝、塑料等材质。 (2)性质类似的废物可收集到同一容器中,性质不相容的危险废物不应混合包装。 (3)危险废物包装应能有效隔断危险废物迁移扩散途径,并达到防渗、防漏要求。	本项目仅收集废机油,来源于 48 店及车辆维修点,采用专业封闭箱货运输,并配备专业收集运输人员、标识等,回收废机油采用小口径钢桶承装并密封,可满足到防渗、防漏要求。收集过程产生的废油桶严格按照危废废物管理,委托有资质单位处置。	符合

I		
(4)包装好的危险废物应设置相应的标签,标签信息应填写完整详实。 (5)盛装过危险废物的包装袋和包装容器破损后应按危险废物进行管理和处置。 (6)危险废物还应根据 GB12643 的有关要求进行运输装。		
危险废物的收集作业应满足如下要求: (1)应根据收集设备、转运车辆以及现场人员等实际情况确定相应作业区域,同时要设置作业界限标志和警示牌。 (2)作业区域内应设置危险废物收集专用通道和人员避险通道。 (3)收集时应配备必要的收集工具和包装物,以及必要的应急监测设备及应急装备。 (4)危险废物收集应参照本标准附录A填写记录表,并将记录表作为危险废物管理的重要档案妥善保存。 (5)收集结束后应清理和恢复收集作业区域,确保作业区域环境整洁安全。 (6)收集过危险废物的容器、设备、设施、场所及其它物品转作它用时,应消除污染,确保其使用安全。	本项目收集过程严格按照程序进行,车辆设置警示牌,严格填写收集记录表,并作为危险废物管理的重要档案妥善保存。收集结束后应清理和恢复收集作业区域,确保作业区域环境整洁安全。	符合
危险废物内部转运作业应满足如下要求: (1)危险废物内部转运应综合考虑厂区的实际情况确定转运路线,尽量避开办公区和生活区。 (2)危险废物内部转运作业应采用专用的工具,危险废物内部转运应参照本标准附录B填写《危险废物场内转运记录表》。 (3)危险废物内部转运结束后,应对转运路线进行检查和清理,确保无危险废物遗失在转运路线上,并对转运工具进行清洗。	本项目危废内部转运线路避开办公 区,采用专门油泵导入油罐,并填 写《危险废物场内转运记录表》。	符合
收集不具备运输包装条件的危险废物时,且危险特性不会对环境和操作人员造成重大危害,可在临时包装后进行暂存贮存,但正式运输前应按本	本项目仅回收废机油,采用专业车 辆运输。	符合

	标准要求进行包装。		
	危险废物贮存可分为产生单位内部 贮存、中转贮存及集中性贮存。所对 应的贮存设施分别为:产生危险废物 的单位用于暂时贮存废矿物油、废镍 镉电池的设施;以及危险废物经营单 位所配置的贮存设施。	本项目为废机油的中转贮存。设有 30t 储罐 2 座。	符合
	危险废物贮存设施的选址、设计、建设、运行管理应满足 GB18597、GBZ1和 GBZ2的有关要求。	本项目贮存设施的选址、设计、建设、运行管理均按照 GB18597、GBZ1 和 GBZ2 的有关要求执行	符合
	危险废物贮存设施应配备通讯设备、 照明设施和消防设施。	本项目贮存设施建成运营后,配备 通讯设备、照明设施和消防设施。	符合
贮存	贮存危险废物时应按危险废物的种 类和特性进行分区贮存,每个贮存区 域之间直接设置挡墙间隔,并应设置 防雨、防火、防雷、防扬尘装置。	本项目贮存的废机油为单一种类危 险废物,并设置了防雨、防火、防 雷、防扬尘装置。	符合
	危险废物贮存期限应符合《中华人民 共和国固体废物污染环境防治法》的 有关规定。	本项目废旧机油暂存时间最长不超过 60 天。	符合
	危险废物贮存单位应建立危险废物 贮存的台账制度,危险废物出入库交 接记录容应照本标准附录执行。	本项目建成运营后,建设单位建立 危险废物贮存的台账制度,出入库 交接记录内容应参照本标准附录 C 执行。	符合
	危险废物贮存设施应根据贮存的废物种类和特性按照 GB18597 附录 A设置标志。	贮存设施根据贮存的废物种类和特性按照 GB18597 相关要求设置标志。	符合
	危险废物贮存设施的关闭应按照 GB18597和《危险废物经营许可证管 理办法》的有关规定执行。	危险废物贮存设施的关闭均按照 GB18597 和《危险废物经营许可证 管理办法》的有关规定执行。	符合
	危废物运输应由持有危险废物经营 许可证的单位按照其许可证的经营 范围组织实施,承担危险废物运输的 单位应获得交通运输部门颁发的危 险货物运输资质。	本项目严格落实危险废物经营许可证制度,项目涉及的危险废物运输车辆严格落实交通运输部门颁发的危险货物运输资质。	符合
运输	危险废物公路运输应按照《道路危险 货物运输管理规定》(交通部令 2016 年第 36 号)执行。	本项目采用公路运输,危险废物公路运输严格按照《道路危险货物运输管理规定》(交通部令2016年第36号)执行。	符合
	运输单位承运危险废物时,应在危险 废物包装上按照 GB18597 附录 A 设置标志。	本 项 目 危 险 废 物 包 装 上 按 照 GB18597 相关要求设置标志。	符合
	危险废物公路运输时,运输车辆应按 GB13392 设置车辆标志。铁路运输 和水路运输危险废物时应在集装箱	项目运输车辆按 GB13392 设置车辆标志。	符合

外按 GB190 规定悬挂标志。		
危险废物运输时的中转、装卸过程应 遵守如下技术要求: (1)卸载区的工作人员应熟悉废物 的危险特性,并配备适当的个人防护 装备,装卸剧毒废物应配备特殊的防 护装备。 (2)卸载区应配备必要的消防设备 和设施,并设置明显的指示标志。 (3)危险废物装卸区应设置隔离设 施,液态废物装卸区应设置收集槽和 缓冲罐。	本项目危险废物运输时的中转、装卸过程遵守如下技术要求: (1)卸载区的工作人员熟悉废物的危险特性; (2)卸载区配备必要的消防设备和设施,并设置明显的指示标志; (3)危险废物装卸区设置隔离设施。并设置事故池。	符合

《危险废物贮存污染控制标准》(GB18597-2023)将于 2023 年 7 月 1 日正式实施,其中已经删除附表 A,本项目标志参照《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(环境保护部公告 2013 年第 36 号)中的附表 A 以及《危险废物识别标志设置技术规范》(HJ1276-2022)相关要求设置。因此,本项目符合《危险废物收集贮存运输技术规范》(HJ2025-2012)相关要求。

3、经营许可相符性分析

本项目涉及危废的收集、运输和贮存,根据《危险废物经营许可证管理办法(2016)》中第二条规定"在中华人民共和国境内从事危险废物收集、贮存、处置经营活动的单位,应当依照本办法的规定,领取危险废物经营许可证。"第三条规定"危险废物经营许可证按照经营方式,分为危险废物收集、贮存、处置综合经营许可证和危险废物收集经营许可证"本项目应办理综合经营许可证。第四条规定"县级以上人民政府环境保护主管部门依照本办法的规定,负责危险废物经营许可证的审批颁发与监督管理工作"。第五条"申请领取危险废物收集、贮存、处置综合经营许可证,应当具备下列条件":

表 2 申请领取危险废物经营许可证的条件

申请基本条件	核对本项目情况	符合性
(一)有3名以上环境工程专业或者	岫岩满族自治县安民废旧机油回收有限	
相关专业中级以上职称,并有3年以	公司具有 3 名以上环境工程专业或者相	<i>5</i> 5 人
上固体废物污染治理经历的技术人	关专业中级以上职称,并有3年以上固	符合
员。	体废物污染治理经历的技术人员。	
(二)有符合国务院交通主管部门有	本项目采用专用车辆承担收集废机油至	
关危险货物运输安全要求的运输工	贮存厂房转运工作,运送处置单位运输	符合
具。	外委有运输资质专用车辆。	
(三)有符合国家或者地方环境保护	本项目具有符合国家或者地方环境保护	符合

_			
	标准和安全要求的包装工具,中转和 临时存放设施、设备以及经验收合格 的贮存设施设备。	标准和安全的包装工具,对于废机油采取专业的车辆进行运输,储油罐耐酸碱腐蚀、不易破损、变形和老化,符合相关要求。	
	(四)有符合国家或者省、自治区、 直辖市危险废物处置设施建设规划, 符合国家或者地方环境保护标准和安 全要求的处置设施设备和配套的污染 防治设施。	本项目卸油均在防渗漏装卸区内进行; 危险废物处置设施、贮存设施配套完善 (配套污染防治设施以及三级防控措施)。	符合
	(五)有与所经营的危险废物类别相 适应的处置技术和工艺。	本项目仅对废机油进行收集和贮存,不 进行处理和处置,因此不涉及处置技术 和工艺。	符合
	(六)有保证危险废物经营安全的规章制度、污染防治措施和事故应急救援措施。	岫岩满族自治县安民废旧机油回收有限 公司建立了危废安全收集、集中贮存的 规章,并制定了污染防治措施和事故应 急救援措施。建立危废回收台账记录制 度,制定了事故应急管理计划,配备了 必要的应急物资。	符合
	(七)以填埋方式处置危险废物的, 应当依法取得填埋场所的土地使用 权。	本项目仅对废机油进行收集和贮存,不 进行处理和处置,因此不涉及填埋方式 处置危险废物。	符合

根据上表七项条件分析比对,本项目设计时充分考虑了危险废物的收集、运输和贮存的要求,满足申请基本条件,符合《危险废物经营许可证管理办法(2016)》的要求。

4、与《废矿物油回收利用污染控制技术规范》(HJ 607-2011)相符性分析,本项目只针对其收集、贮存、运输进行符合性分析,具体分析如下表。

表 3 与《废矿物油回收利用污染控制技术规范》(HJ 607-2011)相符性

项目	规范要求	核对本项目具体情况	符合性 分析
	废矿物油收集容器应完好无损,没 有腐蚀、污染、损毁或其他可能导 致其使用效能减弱的缺陷。	本项目废矿物油储存采用完好无 损,没有腐蚀、污染、损毁的油罐 储存。	符合
一般要	废矿物油收集过程产生的废旧容器 应按照危险废物进行处理,仍可转 作他用的,应经过消除污染处理。	本项目产生的废油桶、废活性炭委 托有资质单位处置。	符合
求	产生源收集的应设专用设施集中回收收集。	本项目废矿物油来源于 4S 店及维修店。	符合
		本项目产生的废油桶集中收集后, 委托有资质单位处置;废劳保品、 抹布委托环卫部门处理。	符合

废矿物油贮存污染控制应符合 本项目废矿物油贮存污染控制符	
GB18597 中的有关规定。	符合
废矿物油贮存设施的设计、建设除 符合危险废物贮存设计原则外,还 应符合有关消防和危险品贮存设计 规范。	符合
废矿物油贮存设施应远离火源,并 本项目废油于封闭库房内储存,并 避免高温和阳光直射。 远离火源。	符合
定存污染控制 技术要	符合
度矿物油贮存设施内地面应做防渗处理,并建设废矿物油收集和导流。本项目厂房均采用重点防渗,并设系统,用于收集不慎泄漏的废矿物置了收集和导流系统、事故池。油。	符合
废矿物油容器盛装液体废矿物油 时,应留有足够的膨胀余量,预留 容积应不少于总容积的 5%。 本项目油罐均设置预留容积,不少 于总容积的 5%。	符合
已盛装废矿物油的容器应密封,贮 油油罐应设置呼吸孔,防止气体膨 胀,并安装防护罩,防止杂质落入	符合
度矿物油的运输转移应按《道路危险货物运输管理规则》、《水路危险货物运输》、《铁路危险货物运输规则》等的规定执行。 度矿物油的运输转移过程控制应按《危险废物转移管理办法》的规定 执行。 染控制 废矿物油转运前应检查危险废物转	符合
度矿物油单位应按照《危险废物经 项目严格按照《危险废物经营许可营许可证管理办法》的规定执行。 证管理办法》要求执行。	符合
管理要求	符合
废矿物油产生单位和废矿物油经营 本项目设立环境保护管理制度并	符合

Т	V 10 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1		
	单位应建立环境保护管理责任制	设1名环保专员。	
	度,设置环境保护部门或者专(兼)		
	职人员,负责监督废矿物油收集、		
	贮存、运输、利用和处置过程中的		
	环境保护及相关管理工作。		
	废矿物油经营单位应按照《危险废		
	物经营单位编制应急炊案指南》建	本环评已要求竣工前完成突发环	符合
	立污染预防机制和环境污染事故应	境应急预案的编制工作。	1万.口.
	急预案制度。		

5、与《挥发性有机物无组织排放控制标准》(GB 37822-2019)相符性分析, 具体分析如下表。

表 4 与《挥发性有机物无组织排放控制标准》(GB 37822-2019)相符性

项目	规范要求	核对本项目具体情况	符合性 分析
基本要求	VOCs 物料应储存于密闭的容器、包装袋、储存、存库、料仓中。 盛装 VOCs 物料的容器或包装袋 应存放于室内,或存放于设置有 雨棚、遮阳和防渗设施的专用场 地。盛装 VOCs 物料的容器或包 装袋在非取用状态时应加盖、封 口、保持密闭。	本项目收集的废机油储存于油罐 内,并放于室内。	符合
物料投加和卸放	液态 VOCs 物料应采用密闭管道输送方式或采用高位槽(罐)、桶泵等给料方式密闭投加。无法密闭投加的,应在密闭空间内操作,或进行局部气体收集,废气应排至 VOCs 废气处理系统。	本项目采用罐车运输,密闭管道 卸料,卸料在封闭车间内进行, 且设置二级活性炭净化装置。	符合
废气收集系统要求	企业应考虑生产工艺、操作方式、废气性质、处理方法等因素,对VOCs废气进行分类收集;废气收集系统排风罩(集气罩)的设置应符合 GB/T16758 的规定;控制风速不应低于 0.3m/s;废气收集系统的输送管道应密闭,废气收集系统应在负压下运行,若处于正压状态,应对输送管道组件的密封点进行泄漏检测,泄漏检测值不应超过500umol/mol,亦不应有感官可察觉泄漏。	本项目设有二级活性炭净化装置一套,过滤风速不低于 0.3m/s,负压收集。	符合
排放控制	VOCs 废气收集处理系统应与生	本项目严格落实"三同时"制度,	符合

要求	产设备同步运行。VOCs 废气收集	VOCs 废气收集处理系统应与生	
	处理系统发生故障或检修时,应	产设备同步运行,VOCs 废气收集	
	停止运行,修完毕后同步投入使	处理系统发生故障或检修时, 停	
	用。	止装卸作业,修完毕后同步投入	
		使用。	
	企业应建立台账,记录废气收集		
	系统、VOCs 处理设施的运行和维		
	护信息,如运行时间、废气处理	本项目建设单位严格落实记录管	
记录要求	量、操作温度、停留时间、吸附	理制度,台账保存期限不少于5	符合
	剂再生 / 更换周期和更换量等关	年。	
	键运行参数。台账保存期限不少		
	于3年。		

6、选址合理性分析

本项目位于辽宁省鞍山市岫岩满族自治县龙潭镇相荣村小堡组,用地性质为工业用地(见附件7),项目用地符合用地要求,与《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(环境保护部公告2013年第36号)中选址的要求符合性详见下表。《危险废物贮存污染控制标准》(GB18597-2023)将于2023年7月1日正式实施,选址要求符合性同见下表。

表 5《危险废物贮存污染控制标准》中选址要求

项目	《危险废物贮存污染控制标准》中选 址要求	本项目情况	符合性 分析
	地质结构稳定,地震烈度不超过7度 的区域内。	本项目位于岫岩满族自治县龙潭 镇相荣村小堡组,区域地震烈度为 7度。	符合
	设施底部必须高于地下水最高水位。	本项目为地上储罐,地下水位年变幅 3m,项目所在地高于地下水最高水位。	符合
危废集贮设	应依据环境影响评价结论确定危险 废物集中贮存设施的位置及其与周 围人群的,并经具有审批权的环境保 护行管部门批准,并可作为规划控制 的依据。	本项目卫生防护距离 50m, 卫生防护距离范围内无居民、学习、医院等敏感目标。	符合
以 直 的 选 址	应避免建在溶洞区或易遭受严重自 然灾害如洪水、滑坡、泥石流、潮汐 等影响的地区。	本项目位于岫岩满族自治县龙潭 镇相荣村小堡组,该区域无断层、 滑坡、泥石流及地下溶洞等潜在危 害因素,地质结构相对稳定。	符合
	应建在易燃、易爆等危险品危废暂存 库、高压电线路防护区域以外。	本项目厂区周边无易燃、易爆等危 险品危废暂存库,无高压输电线路 通过。	符合
	应位于居民区常年最大风频的下风 向。	本项目位于周边最近居民区为相 荣村小堡组,位于常年最大风频的	基本符合

		侧风向。	
	集中贮存的废物堆选址除满足以上 要求外,还应满足基础必须防渗的要求	贮存区及装卸区在原厂房混凝土 地面基础上,至少 1m 厚黏土层(渗 透系数小于 1×10 ⁻⁷ cm/s)或 2mm 厚 的其他人工材料,渗透系数小于 1×10 ⁻¹⁰ cm/s。	符合
	地面与裙角要用坚固、防渗的材料建 造,建筑材料必须与危险废物相容	贮存区及装卸区周边设置截洪沟, 采用至少 1m 厚黏土层(渗透系数 小于 1×10 ⁻⁷ cm/s)或 2mm 厚的其他 人工材料,与本项目所涉及物料不 发生反应。	符合
项目	《危险废物贮存污染控制标准》 (GB18597-2023) 中选址要求	本项目情况	符合性 分析
	贮存设施选址应满足生态环境保护 法律法规、规划和"三线一单"生态 环境分区管控的要求,建设项目应依 法进行环境影响评价。	本项目位于岫岩满族自治县龙潭 镇相荣村小堡组,项目符合"三线 一单"管控要求。	符合
危废集贮设险物中存置	集中贮存设施不应选在生态保护红 线区域、永久基本农田和其他需要特 别保护的区域内,不应建在溶洞区或 易遭受洪水、滑坡、泥石流、潮汐等 严重自然灾害影响的地区。	本项目位于岫岩满族自治县龙潭镇相荣村小堡组,用地性质为工业用地,不占用生态保护红线、永久基本农田。该区域无断层、滑坡、泥石流及地下溶洞等潜在危害因素,地质结构相对稳定。	符合
的 选址	贮存设施不应选在江河、湖泊、运河、 渠道、水库及其最高水位线以下的滩 地和岸坡,以及法律法规规定禁止贮 存危险废物的其他地点。	本项目地上储罐,不在最高水位线 以下,符合法律法规规定。	符合
	贮存设施场址的位置以及其与周围 环境敏感目标的距离应依据环境影 响评价文件确定。	本项目卫生防护距离 50m,卫生防护距离范围内无居民、学习、医院等敏感目标。	符合

本项目与《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(环境保护部公告 2013 年第 36 号)以及《危险废物贮存污染控制标准》(GB18597-2023)中选址的要求相符。

7、"三线一单"相符性分析

(1) "三线一单"相符性分析

表6 "三线一单"符合性分析

内容	具体要求	项目情况	是否符合性
上大 伊	将生态系统服务功能评价后初步提取 红线与生态敏感性评价提取红线进行	本项目位于岫岩满族自治	
生态保 护红线	综合叠加,获得鞍山市生态保护红线理	县龙潭镇相荣村小堡组,不	是
	论分析图。综合计算鞍山市红线理论面	在生态红线保护范围内。 	

		积为350974平方千米,占国土面积比例		
		为37.92%。		
	总体要求	对于环境质量不达标区,环境质量只能 改善不能恶化;对于环境质量达标区, 环境质量应维持基本稳定,且不得低于 环境质量标准。	根据现状调查,项目区域 PM _{2.5} 年平均浓度不能达到 《环境空气质量标准》 (GB3095-2012)二级标准,其余常规污染物指标能够满足《环境空气质量标准》(GB3095-2012)二级标准,本项目所在区域为不达标区。针对超标问题,鞍山市采取一系列措施,采取措施后项目所在区域环境空气质量中PM _{2.5} 超标问题可以得到有效的治理,环境空气质量能够明显得到改善。	是
环境质量底线	水环境	水环境管控分区的划分是以省里下发的鞍山市水环境管控分区为基准,共划分84个管控分区,其中水环境优先保护区16个,水环境重点管控区46个,水环境一般管控区22个。水环境优先保护区需对优质水体进行严格保护,强化水生态建设,避免水环境质量的下降,保护饮用水安全;水环境重点管控区包括工业污染重点管控区、城镇生活污染重点管控区、城镇生活污染重点管控区和农业污染重点管控区,根据各分区特点,规划区域管理对策;水环境一般管控区原则上执行水环境管理的一般性要求,在满足产业准入、总量控制、排放标准等管理制度要求的前提下可集约发展。	本项目选址于岫岩满族自 治县龙潭镇相荣村小堡组, 不在水环境重点管控区满 足区域管控要求。	是
	大气环境	目前大气环境管控分区矢量数据为省级技术组下发文件。共分为优先保护区、高排放区、受体敏感区、布局敏感区、一般管控区。优先保护区:当前只纳入市级以上自然保护区、风景名胜区、森林公园及其他一类区。高排放区:1)工业园区。2)基于污染源普查数据,筛选出空间位置在市级以上工业园区外的高排放企业,以1公里为缓冲区初步划定其范围,作为高排放区的补充区域。	本项目位于岫岩满族自治 县龙潭镇相荣村小堡组,属 于环境空气二类功能区,属 于大气一般管控区。本项目 大气污染物排放量较小;本 项目对大气环境影响不大。 满足区域管控要求。	是

			弱扩散区: 经综合考虑, 鞍山市在全省		
			的扩散条件相对较好,弱扩散区纳入一 般管控区。		
			受体敏感区: 省里统一采用城市建成区		
			边界,已涵盖各市主城区及远郊县市区		
			的建成区边界。		
			布局敏感区:当前省里布局敏感区部分边界已经拟合到市/区县/乡镇行政边		
			界,为模型提取结果。		
			其余为一般管控区。		
			根据鞍山市地类分类文件,根据《土地		
			利用现状分类》划分标准,分别提取农		
			用地、建设用地和未利用土地。对重金		
			属镉、铬、砷、汞和铅进行空间插值,		
			农用地根据《土壤环境质量农用地土壤污染风险管控标准》进行管控分区划		
			分,分别为农用地优先保护区和农用地		
			污染风险重点管控区。通过鞍山市工业		
			企业污染排放重点企业表,建立建设用		
			地污染风险重点管控区。其余区域划为	本项目位于岫岩满族自治	
			一般管控区。土壤环境管控分区的划分	县龙潭镇相荣村小堡组,属	
		土	以省里下发的文件为基础,进行管控分区。	于一般管控区,本项目属于废机油收集转运暂存业,用	
		壤	鞍山市土壤总面积9256.58km², 其中农	地为工业用地,对危险废物	是
		环点	用地面积7766.26km²,建设用地面积	进行收集储存,在落实防渗	, -
		境	1293.94km ² ,未利用土地面积	要求后,对土壤环境影响较	
			196.38km ² 。	小。本项目对土壤环境影响	
			农用地优先保护区:无污染农用地面积	较小。满足区域管控要求。	
			为7635.29km²,为优先保护区域。 污染风险重点管控区:分为农用地污染		
			风险重点管控区和建设用地风险管控		
			区。农用地污染风险重点管控区面积		
			130.97km ² ;建设用地污染风险重点管		
			控区面积9.96km²。总面积为140.93km²。		
			一般管控区:除农用地优先保护区和污		
			染风险重点管控区外的区域,面积为 1480.36km ² 。		
			根据地下水超采、地下水漏斗等状况,		
	资源	-l/	衔接了各部门地下水开采相关空间管	本项目位于岫岩满族自治	
	源利	水资	控要求,将地下水严重超采区、已发生	县龙潭镇相荣村小堡组,不	是
	用	源	严重地面沉降等地质环境问题的区域,	在地下水开采重点管控区,	
	上	·	以及泉水涵养区等需要特殊保护的区域划为地下水开采重点管控区。	满足区域管控要求。	
	线	土	将土壤环境管控分区中的重度污染农	本项目位于岫岩满族自治	是

地资源	用地、建设用地与生态空间重点区中的生态红线相结合,划定土地资源重点管控区。鞍山市共有七个县市区,分别为铁东区、铁西区、立山区、千山区、台安县、海城市和岫岩满族自治县。总面积9256.74km²。农用地优先保护区:无污染农用地面积为3410.07km²,为优先保护区域。污染风险重点管控区和建设用地风险管控区。农用地污染风险重点管控区面积130.97km²;建设用地污染风险重点管控区面积130.97km²;建设用地污染风险重点管控区面积9.96km²。总面积为140.93km²。考虑生态环境安全,将生态保护红线集中、重度污染农用地或污染地块集中的区域确定为土地资源重点管控区。鞍山市土地资源重点管控区占地面积1460.0km²,占市域面积的15.8%,广泛分布于7个区县。	县龙潭镇相荣村小堡组,本项目不在辽宁省鞍山市土 地资源重点管控区范围内, 符合区域管控要求。	
能源	考虑大气环境质量改善要求,在人口密集、污染排放强度高的区域优先划定高污染燃料禁燃区,作为重点管控区。具体工作路径如下,根据鞍山市人口密度分布图、鞍山市PM2.5空气污染现状分布图,分别将其分为4个等级分区;选取人口密度较大两分区确定为鞍山市人口密集区;PM2.5污染指数较大两分区确定为鞍山市空气污染重点监控区;将空气污染重点污染监控区与鞍山市人口密集区合并划定为高污染燃料禁燃区重点管控。	本项目位于岫岩满族自治 县龙潭镇相荣村小堡组,本 项目不在鞍山市高污染燃 料禁燃区范围内,项目大气 污染物产生量小,对大气环 境影响较小。符合区域管控 要求。	是
自然资源	根据各区县耕地、草地、森林、水库、湖泊等自然资源核算结果,加强对数量减少、质量下降的自然资源开发管控,将自然资源数量减少、质量下降的区域作为自然资源重点管控区。	本项目位于岫岩满族自治 县龙潭镇相荣村小堡组,不 在自然资源重点管控区,符 合区域管控要求。	是

根据与鞍山市生态环境局查询可知,本项目在鞍山市三线一单管控单元编码为 ZH21032330001 (见附件5),本项目与准入清单中鞍山市岫岩满族自治县重点管控 区的相符性分析见表7。

表7 与准入清单中岫岩满族自治县管控区的相符性分析

P	内容	具体要求	符合性分析
	控单元编 码	ZH21032330001	/
	控单元名 称	鞍山市岫岩满族自治县一般管控区	/
管控单	单元分类	一般管控单元3	/
	空间布局约束	各开发建设活动应符合《鞍山市国土 空间规划》相关空间布局要求,以及 《岫岩县国土空间规划》要求。	本项目位于岫岩满族自治 县龙潭镇相荣村小堡组,用地 性质为工业用地,符合相关规 划要求。
环境准入清单	污染物 排放管 控	按照《中华人民共和国环境保护法》及相关法律法规要求执行。	本项目对废机油进行收集储存,装卸储存过程产生的非甲烷总烃采用二级活性炭处理后达标排放,无废水排放;噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准;固体废物均得到妥善处置。符合《中华人民共和国环境保护法》及相关法律法规。
	环境风 险控	按照《中华人民共和国环境保护法》及相关法律法规要求执行。	本项目对废机油进行收集 储存,严格落实风险三级防控, 环境风险可接受,符合《中华 人民共和国环境保护法》及相 关法律法规。
	资源开 发 效率 要求	按照《中华人民共和国环境保护法》及相关法律法规要求执行。	本项目对废机油进行收集 储存,不属于加剧自然资源资 产数量减少、质量下降的开发 建设行为。符合《中华人民共 和国环境保护法》及相关法律 法规。

8、与《辽宁省深入打好污染防治攻坚战实施方案》符合性分析

表 8 《辽宁省深入打好污染防治攻坚战实施方案》符合性分析

	项	具体要求	本项目情况	符合性
加快推动	深入推进碳达	以能源、工业、城乡建设、交通运输等领域和钢铁、有色金属、建材、石化化工等 行业为重点,推进健全碳达峰碳中和	本项目为废机油收集中 转暂存项目,不属于钢	符合
绿色	峰行动	"1+N"政策制度。支持有条件的地区和重点行业、重点企业率先达峰。做好结构调	铁、有色金属、建材、 石化化工等重点行业。	

低碳		整"三篇大文章",推进工业领域数字化智		
发展		能化绿色化融合发展,加强重点行业和领		
/2/10		域技术改造,推动绿色低碳转型和高质量 发展。到 2025 年,全省重点行业能效达		
		到标杆水平的产能比例超过30%。按照国		
		家要求,落实二氧化碳排放总量控制制		
		度,组织重点排放单位开展碳交易。加强		
		甲烷等非二氧化碳温室气体排放管控。将		
		温室气体管控纳入环境影响评价管理范		
		围,推动应对气候变化与统计调查、评价		
		管理、监测体系、监管执法和督察考核等		
		工作统筹融合。		
		优化能源供给结构,适度超前布局风电和		
		太阳能发电,安全稳妥发展核电,加快抽		
		水蓄能电站建设,发挥天然气在低碳利用		
		和能源调峰中的积极作用。到 2025 年,		
		全省非化石能源发电装机容量达到 4260 万千瓦,占发电装机容量比例达到 50.9%;		
	推动能	风电光装容量力争达到 3700 万千瓦以上		
	が至い手が上	红河二期工程新增装机容量 224千瓦,全	本项目为废机油收集中	
	源清洁	省核电装机容量力争达到 672 万千瓦。原	转暂存项目,能源消耗	符合
	低碳转	则上不再新增自备燃煤机组,支持自备燃	量不大,符合相关要求。	
	型	煤机组实施清洁能源替代, 鼓励自备电厂		
		转为公用电厂。稳妥推进天然气气化工		
		程,按照"以气定改"、"先立后破"原则,		
		在具备条件的地区推进居民煤改气,新增		
		天然气优先保障居民生活和清洁取暖需		
		求。加快调整能源消费结构,提升电能占		
		终端能源消费比重。		
	坚决遏	对"两高"项目实行清单处理、分类处置、 动态监控。严格把好新建、扩建钢铁、水		
		初念监控。严格把好新建、扩建钢铁、小 泥熟料、平板玻璃、电解铝等高耗能高排	本项目为废机油收集中 本项目为废机油收集中	
	制高耗	放项目准入关。支持符合规定特别是生产	等暂存项目,不属于钢 转暂存项目,不属于钢	
	能高排	国内短缺重要产品、有利于碳达峰碳中和	铁、水泥熟料、平板玻	
	放项目	目标实现的项目发展。稳妥做好存量"两	璃、电解铝等高耗能高	符合
	/** >	高"项目管理,合理设置政策过渡期,积	排放项目,符合相关要	
	盲目发	极推进有节能减排潜力的项目改造升级。	求。	
	展	强化常态化监管,坚决停批停建不符合规		
		定的"两高"项目。		
	推进资	坚持节约优先,推进资源总量管理、科学		
		配置,全面促资源节约循环高效利用,推	本项目废机油收集中转	*** *
	源节约	动利用方式根本转变。实施全民节水行	暂存项目,有利于资源	符合
	高效利	一动,建设节水型社会。坚持最严格的节约 田地制度。担京土地利田集约度。科学会	节约利用。	
		用地制度,提高土地利用集约度。科学合		

	用和清	理有序开发海洋资源、矿产资源,提高开		
	 洁生产	发利用水平。继续推进园区实施循环化改		
	11111	造,推动大宗固体废弃物和工业资源综合		
		利用示范基地建设,推进污水循环利用。		
		到 2025 年,全省万元地区生产总值用水		
		量较 2020 年下降 14%,农灌溉水有效利		
		用系数达到 0.593。引导重点行业深入实		
		施清洁化改造,对能源、钢铁等 14 个重		
		点行业存在"双超、双有"和高耗能的重点		
		单位,分年度实施强制性清洁生产审核。		
	实施大	推动重点行业落后产能退出,推进钢铁、		
	三	焦化、有色金属行业技术升级。加快供热	 本项目不属于落后产能	
		区域热网互联互通建,淘汰管网覆盖范围		5
764 J	降碳协	内的燃煤锅炉和散煤。推进工业炉窑清洁	项目,不使用燃煤锅炉,	斧
深入	同增效	能源替代,以菱镁、陶瓷等行业为重点,	符合相关要求。	
打好	行动	开展涉气产业集群排查及分类治理。		
蓝天		充分发挥热电机组和大型热源厂能力,推		
保卫	实施清	 进燃煤锅炉关停整合。在空气质量未达标	本项目办公室取暖采用	
战	洁取暖	的城市城中村、城乡结合部,因地制宜推	电供暖,生产车间不供	
	攻坚行	进供暖清化,有序开展农村地区散煤替代	暖,不使用散煤,符合	1 7
	动	工作。到 2025 年,城市建成区基本淘汰	相关要求。	
		35 蒸吨/小时及以下燃煤锅炉。	117.424.4	
		以水生态环境持续改善为核心,统筹水资		
深入	持续打	源利用、水生态保护和水环境治理,污染		
打好	好辽河	减排与生态扩容两手发力,推动河流水系		
		连通,统筹实施水润辽宁工程,合理调配	本项目无工业废水产	
碧水	流域综	水资源,逐步恢复水体生态基流,实施入	生。	7
保卫	合治理	河排污口整治等"四大行动"。到 2025 年,	•	
VK-1-	HILL	辽河流域优良水体比例在达到国家考核		
战	攻坚战	标准基础上有所提升。		
		加强地表水与地下水污染、土壤与地下水		
		污染、区域与场地地下水污染协同防治。		
深入	A	以省级化工园区、垃圾填埋场、危险废物		
打好	强化地	处置场为重点,持续开展地下水环境状况	 本项目通过对厂区防渗	
11 71	下水污	调查评估。划定地下水型饮用水水源补给	处理,可有效控制本项	
净土		区分类制定保护方案。划定地下水污染防		名
/II TI	染协同		目运营过程中对地下	
保卫	防治	治重点区,强化污染风险管控。按照国家	水、土壤的影响。	
战	1/4 (H	部署,分级分类开展地下水环境监测评		
		价, 在地表水和地下水交互密切的典型地		
		区开展污染综合防治试点。		L

9、对照《辽宁省"十三五"挥发性有机物污染防治工作方案》、《重点行业挥发性有机物综合治理方案》,本项目符合现行环境管理要求。

表 9 本项目与《"十三五"挥发性有机物污染防治工作方案》(环大气[2017]121 号文)相符性分析表

政策要求	本项目	是否 符合
(一)加大产业结构调整力度。 1.加快推进"散乱"污企业综合整治。2、严格建设项目环境准入。提高 VOCs 排放重点行业环保准入门槛,严格执行我省相关产业的环境准入指导意见,控制新增污染物排放量。逐步提高石化、化工、工业涂装、包装印刷等高 VOCs 排放建设项目的环保准入门槛,实行严格的控制措施。新建涉 VOCs 排放的重点工业企业应进入园区。严格涉 VOCs 建设项目环境影响评价,实行区域内 VOCs 排放等量削减替代,并将替代方案落实到企业排污许可证中,纳入环境执法管理。新、改、扩建排放 VOCs 的项目,应从源头加强控制,使用低(无) VOCs 含量的原辅材料,加强废气收集,配套安装高效收集治理设施。3、强化重点企业减排调控。加大工业企业生产季节性调控力度,充分考虑企业产能利用率、生产工艺、污染排放等特点提出行业错峰生产要求。	本项目为新建项目,属于废机油收集中转暂存项目,不属于石化、化工、装饰、工业涂装等高 VOCs 排放行业。选址位于辽宁省鞍山市满族自治县龙潭镇相荣村小堡组本项目产生VOCs 工序采用二级活性炭净化装置,满足要求。	符合
(二)加快实施工业源 VOCs 污染防治。 1.全面实施石化行业达标排放。石油炼制、石油化工、合成树脂等行业应严格按照排放标准要求,全面加强精细化管理,确保稳定达标排放。 全面开展泄漏检测与修复(LDAR),建立健全管理制度,重点加强搅拌器、泵、压缩机等动密封点,以及低点导淋、取样口、高点放空、液位计、仪表连接件等静密封点的泄漏管理。严格控制储存、装卸损失,优先采用压力罐、低温罐、高效密封的浮顶罐,采用固定顶罐的应安装顶空联通置换油气回收装置;有机液体装卸必须采取全密闭底部装载、顶部浸没式装载等方式,汽油、航空汽油、石脑油、煤油等高挥发性有机液体装卸过程采取高效油气回收措施,使用具有油气回收接口的车船。强化废水处理系统等逸散废气收集治理,废水集输、储存、处理处置过程中的集水井(池)、调节池、隔油池、曝气池、气浮池、浓缩池等高浓度 VOCs 逸散环节应采用密闭收集措施,并回收利用,难以利用的应安装高效治理设施。加强有组织工艺废气治理,工艺弛放气、酸性水罐工艺尾气、氧化尾气、重整催化剂再生尾气等工艺废气优先回收利用,难以利用的,应送火炬系统处理,或采用催化焚烧、热力焚烧等销毁措施。加强非正常工况排放控制。在确保安全前提下,非正常工况排放的有机废气严禁直接排放,有火炬系统的,送入火炬系	本项目收集过程采用封闭运输, 装卸储存过程,使用高效二级活性炭吸附装置对逸散度气进行吸附,产生 VOCs 工序采用活性 炭净 化效率 90%。	符合

统处理,禁止熄灭火炬长明灯;无火炬系统的,应采用冷凝、吸收、吸附等处理措施,降低排放。加强操作管理,减少非计划停车及事故工况发生频次;对事故工况,企业应开展事后评估并及时向当地环境保护主管部门报告。

2.加快推进化工行业 VOCs 综合治理。加大制药、农药、煤化工(含现代煤化工、炼焦、合成氨等)、橡胶制品、涂料、油墨、胶粘剂、染料、化学助剂(塑料助剂和橡胶助剂)、日用化工等化工行业 VOCs 治理力度。京津冀大气污染传输通道城市 2017年底前基本完成。推广使用低(无)VOCs 含量、低反应活性的原辅材料和产品。

农药行业要加快替代轻芳烃等溶剂,大力推广水基化类制剂;制药行业鼓励使用低(无)VOCs含量或低反应活性的溶剂;橡胶制品行业推广使用新型偶联剂、粘合剂等产品,推广使用石蜡油等全面替代普通芳烃油、煤焦油等助剂。优化生产工艺方案。农药行业加快水相法合成、生物酶法拆分等技术开发推广;制药行业加快生物酶合成法等技术开发推广;橡胶制品行业推广采用串联法混炼、常压连续脱硫工艺。

参照石化行业 VOCs 治理任务要求,全面推进化工企业设备动静密封点、储存、装卸、废水系统、有组织工艺废气和非正常工况等源项整治。现代煤化工行业全面实施 LDAR,制药、农药、炼焦、涂料、油墨、胶粘剂、染料等行业逐步推广 LDAR 工作。加强无组织废气排放控制,含 VOCs 物料的储存、输送、投料、卸料,涉及 VOCs 物料的生产及含 VOCs产品分装等过程应密闭操作。反应尾气、蒸馏装置不凝尾气等工艺排气,工艺容器的置换气、吹扫气、抽真空排气等应进行收集治理。

3.加大工业涂装 VOCs 治理力度。全面推进集装箱、汽车、木质家具、船舶、工程机械、钢结构、卷材等制造行业工业涂装 VOCs 排放控制,在重点地区还应加强其他交通设备、电子、家用电器制造等行业工业涂装 VOCs 排放控制。重点地区力争 2018 年底前完成,京津冀大气污染传输通道城市 2017 年底前基本完成。

4.深入推进包装印刷行业 VOCs 综合治理。推广使用低 (无)VOCs 含量的绿色原辅材料和先进生产工艺、设备,加强 无组织废气收集,优化烘干技术,配套建设末端治理措施,实现包装印刷行业 VOCs 全过程控制。重点地区力争 2018 年底前完成,京津冀大气污染传输通道城市 2017 年底前基本完成。

加强源头控制。大力推广使用水性、大豆基、能量固化等低(无)VOCs含量的油墨和低(无)VOCs含量的胶粘剂、清洗剂、润版液、洗车水、涂布液,到2019年底前,低(无)VOCs含量绿色原辅材料替代比例不低于60%。对塑料软包装、纸制品包装等,推广使用柔印等低(无)VOCs排放的印刷工艺。在塑料软包装领域,推广应用无溶剂、水性胶等环境友好型复合

技术,到 2019 年底前,替代比例不低于 60%。加强废气收集与处理。对油墨、胶粘剂等有机原辅材料调配和使用等,要采取车间环境负压改造、安装高效集气装置等措施,有机废气收集率达到 70%以上。对转运、储存等,要采取密闭措施,减少无组织排放。对烘干过程,要采取循环风烘干技术,减少废气排放。对收集的废气,要建设吸附回收、吸附燃烧等高效治理设施,确保达标排放。5.因地制宜推进其他工业行业 VOCs 综合治理。各地应结合本地产业结构特征和 VOCs 治理重点,因地制宜选择其他工业行业开展 VOCs 治理。电子行业应重点加强溶剂清洗、光刻、涂胶、涂装等工序 VOCs 排放控制;制鞋行业应重点加强鞋面拼接、成型、组底、喷漆、发泡、注塑、印刷、清洗等工序 VOCs 排放治理;纺织印染行业应重点加强化纤纺丝、热定型、涂层等工序 VOCs 排放治理;木材加工行业应重点加强干燥、涂胶、热压过程 VOCs 排放治理。		
成革、橡胶和塑料制品等行业 VOCs 污染防治,各地可依据 当地产业结构特色,因地制宜进木材工、钢铁行业、电子行	本项目建成后严格 落实"一厂一策一 档"制度。	符合
(五)建立完善 VOCs 监管体系。加强 VOCs 排放调查与动态更新。建立健全 VOCs 排放清单,定期开展 VOCs 排放清单动态更新。结合排污许可证实施情况和第二次污染源普查工作,进一步系统梳理 VOCs 排放与治理情况。依据国家出台的重点行业环境影响评价源强核算技术指南、排污许可相关技术规范确定计算方法,开展 VOCs减排核查核算。探索引入第三方核算机制。实施排污许可制度。落实涉 VOCs 工业行业排污许可证相关技术规范及监督管理要求。按照国家统一部署,按时完成石化工业中"精炼油石油产品制造、乙烯、芳烃"等工业企业、制药工业中"化学药品原料药制造(不含医药中间体)"工业企业、农药制造工业中"化学农药制造(包含农药中间体)"工业企业、农药制造工业中"化学农药制造(包含农药中间体)"工业企业、汽车制造业、印刷工业、电子工业等行业排污许可证的核发工作。通过排污许可管理,落实企业 VOCs 源头削减、过程控制和末端污染治理措施要求,逐步规范涉 VOCs 工业企业自行监测、台账记录和定期报告的具体规定,推进企业持证、按证排污,严厉处罚无证和不按证排污行为。建立健全监测监控体系。加强环境质量和污染源排放 VOCs 自动监测工作,开展 VOCs 重点排污单位的监督性监测,强化 VOCs 执法能力建设,全面提升 VOCs 环保监管能力。	本项目严格落实排 污许可证制度、严 格落实自行监测及 台账管理制度。	符合

表	₹10 2	比项目与《重点行业挥发性有机物组	宗合治理方案》符合	性分析表
		文件要求	项目情况	符合情况
	容器、包装袋	1.容器或包装袋在非取用状态时是否加盖、封口,保持密闭; 盛装过 VOCs物料的废包装容器是否加盖密闭。 2.容器或包装袋是否存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。	本项目使用封闭储 油罐储存,封闭油桶 转运。	符合
		3.储罐类型与储存物料真实蒸气压、 容积等是否匹配,是否存在破损、孔 洞、缝隙等问题。	储罐类型与储存物料真实蒸气压、容积等匹配且无破损、孔洞、缝隙等问题。	符合
VOCs 物料 储存	挥性机体罐	4.内浮顶罐的边缘密封是否采用浸液式、机械式鞋形等高效密封方式。 5.外浮顶罐是否采用双重密封,且一次密封为浸液式、机械式鞋形等高效密封方式。 6.浮顶罐浮盘附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。	本项目使用 HG5-1580-85 卧式 储罐,非浮顶罐。	不涉及
	· 峰	7.固定顶罐是否配有 VOCs 处理设施 或气相平衡系统。 8.呼吸阀的定压是否符合设定要求。 9.固定顶罐的附件开口(孔)是否密 闭(采样、计量、例行检查、维护和 其他正常活动除外)。	固定顶罐设有活性 炭吸附装置;固定顶 罐的附件开口均密 闭。	符合
	储库、料仓	10.围护结构是否完整,与周围空间完全阻隔。 11.门窗及其他开口(孔)部位是否关闭(人员、车辆、设备、物料进出时,以及依法设立的排气筒、通风口除外)。	本项目围护结构完整,与周围空间完全隔离,门窗除进出时 完全关闭。	符合
VOCs 物料	液态 VOCs 物料	1.是否采用管道密闭输送,或者采用 密闭容器或罐车。	本项目厂外采用封 闭箱式货车运输; 厂 房内采用管道封闭 运输; 外运委托有资 质罐车运输。	符合
转移 和输 送	粉状、 粒状 VOCs 物料	2.是否采用气力输送设备、管状带式输送机、螺旋输送机等密闭输送方式,或者采用密闭的包装袋、容器或罐车。	本项目无粉状、粒状 VOCs 物料。	不涉及

文件要求	项目情况	符合情况
.强化低端处理设施升级改造。企业新建 台理设施或对现有治理设施实施改造,应 结合 VOCs 产生特征、生产工况等合理选 译治理技术,对治理难度大、单一治理工 艺难以稳定达标的,要采用多种技术的组 合工艺。采用活性炭吸附技术的,吸附装 置和活性炭应符合相关技术要求,并按要 求足量添加、定期更换活性炭。	本项目采用二级活性炭吸附装 置。	符合
2.全面开展泄漏检测与修复 (LDAR)。各地区对辖区企业提出要求,按照行业排放标准要求开展 LDAR 工作;其企业载有气态、液态 VOCs 物料设备与管线组件密封点大于等于 800 个的,应开展 LDAR工作,要求在夏季高温季节期间加密一次动态密封点泄漏检测与修复。建立台账,记录检测时间、检测仪器读数、修复时间、修复后检测仪器读数等信息,11 月 30 日前完成 LDAR 检测修复工作报告。	本项目不属于石油炼制、石油化学、合成树脂产业,使用碘值800以上的二级活性炭,严格要求防渗措施,建立台账及记录检测等措施。	符合
3.规范企业非正常工况排放管理。石化、 化工、制药等企业合理安排停检修计划, 建立开停工(车)、检修、设备清洗等非正 常工况的环境管理制度。在确保安全的前 提下尽可能不在臭氧污染高发时段安排 全厂开停车、装置整体停工检修和储罐清 洗作业等,减少非正常工况 VOCs 排放; 确实不能调整的,应加强清洗、退料、吹 扫、放空、晾干等环节的 VOCs 无组织排 放控制,产生的 VOCs 应收集处理,确保 满足安全生产和污染排放控制要求。	本项目属于废机油回收中转暂存行业,不属于石化、化工、制药等产业。在非正常工况的环境管理企业采用停工、检修,在确保安全的前提下,不会在臭氧污染高发时段安排全厂开停装置整体停工检修,确保满足安全生产和污染排放控制要求。	符合
4.引导工业企业实施错峰生产。鼓励汽车喷漆、工业涂装、包装印刷、印染、木制家具等行业在4月底前制定生产计划,调整易产生VOCs工序不在臭氧高发时段的臭氧污染高值时间(10:00-16:00,下同)实施;鼓励石化、油品仓储运输和加油站合理调整装卸时间,尽量不安排在臭氧污染高值时间装油卸油。	本项目属于废机油回收中转暂存 行业,油品仓储运输合理调整装 卸时间,不安排在臭氧污染高值 时间装油卸油。	符合

规范要求 核对本项目具体情 符合性分							
风祀安水	况	析					
加强对危险废物转移活动的监督管理,防止污染环境, 根据《中华人民共和国固体废物污染环境防治法》等有 关法律法规,制定本办法。	本项目严格遵守《中华人民共和国固体废物污染环境防治法》、《危险废物转移管理办法》等有关法律法规。	符合					
危险废物转移应当遵循就近原则。跨省、自治区、直辖市转移(以下简称跨省转移)处置危险废物的,应当以转移至相邻或者开展区域合作的省、自治区、直辖市的危险废物处置设施,以及全国统筹布局的危险废物处置设施为主。	本项目不涉及跨省 转运,满足就近原 则。	符合					
生态环境主管部门、交通运输主管部门和公安机关应当建立健全协作机制,共享危险废物转移联单信息、运输车辆行驶轨迹动态信息和运输车辆限制通行区域信息,加强联合监管执法。	本项目建成运营后, 建设单位将委托有 危险废物经营许可 证的单位进行处置, 委托危险货物运输 资质公司承担运输。	符合					
运输危险废物的,应当遵守国家有关危险货物运输管理的规定。未经公安机关批准,危险废物运输车辆不得进入危险货物运输车辆限制通行的区域。	本项目在废机油收 集,采用专业车辆回 收,外送委托专业有 资质部门,严格遵守 国家有关危险货物 运输管理的规定。	符合					
移出人应当履行以下义务: (一)对承运人或者接受人的主体资格和技术能力进行核实,依法签订书面合同,并在合同中约定运输、贮存、利用、处置危险废物的污染防治要求及相关责任; (二)制定危险废物管理计划,明确拟转移危险废物的种类、重量(数量)和流向等信息; (三)建立危险废物管理台账,对转移的危险废物进行计量称重,如实记录、妥善保管转移危险废物的种类、重量(数量)和接收人等相关信息;	本项目废机油主要 来源为电动自行车、 汽车 4S 店,电动汽 车、机动车维修店, 严格落实转运制度、 管理计划及台账。	符合					

承运人应当履行以下义务: (一)核实危险废物转移联单,没有转移联单的,应当拒绝运输; (二)填写、运行危险废物转移联单,在危险废物转移联单中如实填写承运人名称、运输工具及其营运证件号,以及运输起点和终点等运输相关信息,并与危险货物运单一并随运输工具携带; (三)按照危险废物污染环境防治和危险货物运输相关规定运输危险废物,记录运输轨迹,防范危险废物丢失、包装破损、泄漏或者发生突发环境事件;	本项目严格落实转运联单管理制度。	符合
采用包装方式运输危险废物的,应当妥善包装,并按照国家有关标准在外包装上设置相应的识别标志。装载危险废物时,托运人应当核实承运人、运输工具及收运人员是否具有相应经营范围的有效危险货物运输许可证件,以及待转移的危险废物识别标志中的相关信息与危险废物转移联单是否相符;	本项目仅集分别。 一型,收集过程箱箱 一型,收集的,一个。 一型,一个。 一一、 一一、 一一、 一一、 一一、 一一、 一一、 一一	符合

本项目将于 2023 年 7 月 1 日后按照《危险废物贮存污染控制标准》(GB18597-2023) 具体要求实施。

二、建设项目工程分析

1、项目背景

岫岩满族自治县安民废旧机油回收有限公司位于鞍山市岫岩满族自治县龙潭镇相荣村小堡组,成立于 2022 年 10 月 25 日,经营范围为危险废物经营。

岫岩满族自治县安民废机油回收有限公司拟投资 80 万元建设年回收 500 吨废旧机油项目,本项目用地租赁岫岩满族自治县八五娟纱厂内闲置空地,用地性质为工业用地。本项目对废机油进行集中收集、贮存,不设置处置等加工环节,年收集贮存废机油 500t,最大贮存量为 50t。主要来源为电动自行车、汽车 4S 店,电动汽车、机动车维修店,委托具有危险废物运输及处置资质的盘锦兴达沥青有限公司负责运输及处置。该项目已在岫岩满族自治县发展和改革局备案,文件号为岫发改备[2022]204 号

2、工程内容及规模

本项目租赁岫岩满族自治县八五娟纱厂闲置空地,用地性质为工业用地,建设储油厂房一座,内设 30t 废油储罐 2 个,进行废矿物油的收集、贮存。厂区面积为 600m²,建筑物面积 260m²。本项目用地指标见表 13, 主要构筑物建筑面积及围护结构情况见表 14。

表 13 项目用地技术指标

序号	项 目	单位	数量
1	总用地面积	m ²	600
2	总建筑面积	m ²	260
3	建、构筑物占地面积	m ²	300
4	道路、广场占地面积	m ²	300
5	建筑系数	%	50
	容积率		0.43

表 14 本项目厂区构筑物建筑面积及围护结构表

序号	7卦 5公 5月 4分	建(构)筑物基	建筑	建筑面积	国护灶物	夕沙
万亏	建筑名称	底面积 (m²)	层数	(m^2)	围护结构	备注
1	1 储油厂房 250		1	250	砖混	新增
2	办公室	7	1	7	砖混	新增
3	早厕	3	1	3	砖混	新增
4	事故池	40	/	/	地下(重点	容积 100m³
_ +	事 以他	40	/	/	防渗)	春秋 TOOM
	小计	300		260		

3、项目组成

项目由主体工程、辅助工程、储运工程、公用工程、环保工程等组成,项目具体组成情况见表 15。

表 15 项目建设组成表

工程	名称	主要建设内容					
主体 工程	储油厂房	建筑面积 250m²,内含油罐、卸油区、危废暂存间。					
補助 水公室 建筑面积 7m²,用于经营办公使用。							
	收集	采用专业封闭箱货回收,回收废机油采用小口径钢桶承装并密封。					
	厂内运输	进油时利用罐车自带油泵卸油,出油时利用油泵上油,无需运输工具。					
储运 工程	装卸	生产厂房内设置专门的重点防渗装卸车位,面积 24m²(8m*3m),废矿物油装卸时将车停入装卸车位,使用罐车自带油泵将油卸入油罐中。					
	储罐	设 30t 储罐 2 座,放置在厂房内。					
	外运	企业雇佣具有资质的危险废物运输车辆运输,并委托有资质部门处置。					
	供水工程	生产不使用水,生活用水外购。					
公用	排水工程	本项目生产不使用水,生活污水排入旱厕,定期清掏,用于农田施肥, 不外排。					
工程	供暖工程	本项目仅有办公室需要采暖,采用电采暖					
-	供电工程	由市政电业部门提供。					
	废气控制	废机油装卸储存过程产生的非甲烷总烃,经二级活性炭吸附装置处置后, 经 15m 高排气筒排放。					
	废水控制	本项目生产不使用水,生活污水排入旱厕,定期清掏用于农田施肥。					
	固废控制	废活性炭、废油桶属于危险废物,暂存于危废暂存间,并委托有处理资质单位处置;废劳保用品、废油抹布随生活垃圾收集,定期交由环卫部门处理。					
环保 工程	地下水及土壤污染物	废机油收集过程,采用封闭防渗漏箱货运输,废机油采用小口径钢桶承					
	壤污染控制 环境风险	装并密封。厂房全部地面、事故池均采取重点防渗。 设置三级防控 第一级,废机油贮存区设置 300mm 围堰,装卸区设置导流沟; 第二级,设置事故池,事故池容积为 100m³,规格(8m*5m*2.5m)。 第三级,厂房周边设置雨排水截流沟,雨水设截流总阀,总阀采用电动 阀,设于地下阀井处; 此外,导流沟、截流沟及事故池均进行重点防渗。					

本项目废机油收集、收集运输(由收集点至本项目)采用封闭防渗漏箱货运输,废机油采用小口径钢桶承装并密封。处置、处置运输(本项目至处置单位或由收集点直接至处置单位)委托具有危险废物运输、处置资质的盘锦兴达沥青有限公司负责,企业已与处置单位均签订合同,详见附件 4。外运线路及处置过程不在本项目评价范围内,建设单位投入运行前,须取得相关危废经营许可及运输资质(或与有运输资质的单位或个人

租赁有资质车辆)。

4、主要产品及产能情况

本项目建成后从事废机油贮存及转运,无处置、加工业务,废机油仓库最大贮存能力 50t,30 天为 1 个周转期,全年最大周转量为 500t,单次废机油贮存时间不超过 60 天。具体方案、废矿物油主要理化性质具体指标指数详见表 16、表 17、表 18。

表 16 项目产品方案

** - 21117 111124214						
产品名称	储存方式	是否属于危	最大贮存量	年最少周转	周转量(t/a)	备注
厂阳石协	油针刀式	险废物	(t)	次数 (次)	月秋里(l/a) 	金 在
						单次贮存时
废机油	储罐	是 (HW08)	50	10	500	间最长不超
						过 60d

表 17 项目回收油品具体指标

外观与形 状	相对密度 (水=1)	凝固点(℃)	沸点(℃)	闪点(℃)	引燃温度	饱和蒸汽压 (KPa)
淡黄色粘 稠液体	0.88	<-18	240~400	>200	>250	0.17 (145.8℃)

机油是由石油所得精炼液态烃的混合物,主要为饱和的环烷烃与链烷烃混合物,原油经常压和减压分馏、溶剂抽提和脱蜡,加氢精制而得。包括轻质、重质燃料油,润滑油,冷却油等矿物性碳氢化合物。矿物油可漂浮于水体表面,影响空气与水体界面氧的交换;也可分散在水中。废矿物油为因受杂质污染,氧化和热的作用,改变了原有的理化性能而不能继续使用时被更换下来的油;主要是含碳原子数比较少的烃类物质,多数是不饱和烃。其主要成分是链长不等的碳氢化合物,性能稳定。

表 18 本项目产品危险特性表

序号	废物类别	行业来源	废物代码	危险废物	危险特性
1	HW08	非特定行业	900-214-08	废机油	T (毒性)、I (易燃 性)

5、储运方式

本项目厂外收集,采用封闭防渗漏箱货运输,废机油采用小口径钢桶承装并密封; 厂内经卸油泵导入罐中;废机油装卸均在储油厂房内卸油区进行。外运过程,企业外委 具有资质的危险废物运输车辆运输,并委托有资质部门处置。

6、主要原辅材料消耗情况

(1) 主要原辅材料消耗

项目主要原辅材料及能源消耗情况见表 19。

表 19 原辅材料及能源消耗情况

序号	类别	消耗量	消耗量来源			
1	废机油	500t/a	罐车收集	汽运		
2	防腐蚀手套	12 双/a	外购	汽运		
3	防腐蚀工作服	6 套/a	外购	汽运		
4	防腐蚀工作鞋	12 双/a	外购	汽运		
5	防护面罩	6 ↑ /a	外购	汽运		
6	抹布	0.01t/a	外购	汽运		
7	活性炭	0.212t/a	外购	汽运		
能源消耗						
1	新水	$67.5 \text{m}^3/\text{a}$	外购	/		
2	电力	2万 kw.h/a	市政供电	/		

7、主要设备

本项目设备详见表 20、表 21、表 22。

表 20 主要设备设施一览表

序号	设备名称	规格、型号	数量	备注
1	油罐(自带液位计)	35m³/∱	2 个	/
2	卸油泵	15m³/h; 11.5kw	4 个	2 用 2 备
3	灭火器	干粉、20kg/个	用于消防	
4	二级活性炭净化装置	单级尺寸 (500mm*400mm*500mm)、 总净化效率 90%	1套	二级
5	风机	风量 500m³/h	1台	室内
6	运输车辆	4200mm*1600mm*1800mm	1 辆	防渗防漏,负责废 机油收集运输
7	油桶	2 个/a	外购	汽运

表 21 储罐基本信息一览表

序号	类别	参数	序号	类别	参数
1	材质	钢制	7	筒体长度	6200mm
2	型号	HG5-1850-85	8	总长度	7504mm
3	样式	 大但	9	支架长度	5080mm
4	公称容积	$35m^3$	10	支架高度	560mm
5	筒体直径	2400mm	11	油罐重量	4900kg

	6	ŕ	育体壁 厚	8m	m	12	放置形	式	地上、卧式		
	表 22 活性炭吸附装置参数										
	设备名称 数量		数量	工序	关键指标		单位	数值			
	二级活性炭 吸附装置 (DA001)		吸附装置 1 卸油储罐		单台处理风量		理风量	m^3/h	500		
					吸附过滤材质		/	颗粒状			
					fra N.L. Att fett		单次	填充量	kg		53
					净化效率		%		90		
					活性碳碘值		mg/g		800		
					单台活性	炭更换频率	/	每	2.5 月更换一次		

8、平面布局

本项目位于鞍山市岫岩满族自治县龙潭镇相荣村小堡组,占地面积 600m²,用地性质为工业用地。厂区东侧为凤呈祥再生资源公司厂区空地,隔空地 205m 处为沙河支流;南侧为凤呈祥再生资源公司厂房,隔厂房 175m 处为沙河; 西侧为空地; 北侧为凤呈祥再生资源厂房。

本项目厂区内部,自西向东依次为油罐、危废暂存间、装卸区、事故池、办公室, 厂界内所有设备厂房用实体围墙封闭,厂区独立。本项目厂区内平面布置详见附图 4。

9、劳动定员及工作制度

本项目职工定员为5人,其中管理人员1人,工人4人。

本项目采取8小时一班工作制,全年营运300天。

10、公用工程

供暖:本项目冬季仅办公用房需要采暖,采暖方式为电采暖。

供电:该项目用电由电业局提供。

供水:本项目用水外购。

排水:本项目生产不使用水,生活污水排入旱厕,定期清掏,用于农田施肥不外排。

其他: 本项目无食堂及洗浴。

1、施工期

本项目租赁岫岩满族自治县八五娟纱厂闲置空地,建设1座生产厂房(含卸油区、油罐区、事故池、危废暂存间),并安装设备,新建建筑除事故池以外均为砖混结构,本项目不涉及原有建筑拆除工程,因此施工期产生的污染主要是噪声、扬尘、固体废物及施工废水,其中噪声和扬尘影响是主要环境影响因素。

工艺流程和产排污环

节

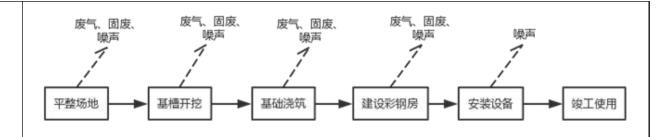


图 1 施工期工艺流程图

2、运营期

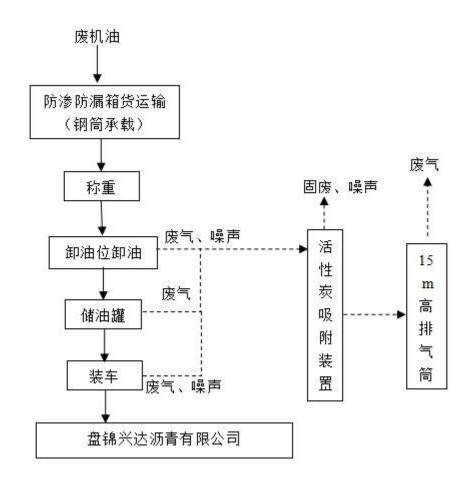


图 2 营运期工艺流程及产污节点图

本项目废矿物油主要来源为电动自行车、汽车 4S 店,电动汽车、机动车维修店。

1、废机油贮存工艺流程

本项目废矿物油在回收点进行检验、称重,并采用封闭防渗漏箱货运输,废机油采用小口径钢桶承装并密封;运输至场内,将箱货车驶入厂区固定卸油位,使用卸油管线卸至油罐内,卸油过程均在厂房内进行,厂房均为重点防渗;贮存达到运载量(50t)时,拟委托具有危险废物运输及处置资质的盘锦兴达沥青有限公司负责运输及处置。如当日

收集量达到 50t (厂区最大贮存量)以上,将不运输至厂内,直接委托盘锦兴达沥青有限公司负责运输及处置。

此外,本环评要求对于外委单位应严格按照《道路危险货物运输管理规定》及《危险废物转移管理办法》规定执行;废矿物油转运前应检查危险废物转移,核对品名、标志等;废矿物油转运前应制定突发环境事件应急预案;废矿物油转运前应检查转运设备和盛装容器的稳定性、严密性,确保运输途中不会破裂、倾倒和溢流;废矿物油在转运过程中应设专人看护。

(1) 收集、检验、称重

本项目由收集负责人定期与 4S 店、维修店等回收点联系, (如 4S 店、维修店等回收点量大亦可提前一天联系收集负责人),根据各回收点的量制定收集路线,并使用封闭防渗漏箱货运输。车辆到达回收点后,收集负责人对油品进行初步检验、符合条件后称重(4S 店及维修店均为油桶),记录毛重,将废机油导入小口径钢桶承装并密封,称皮重并记录,做差并记录净重。

(2) 运输

本项目废机油收集过程采用专业封闭防渗漏箱货运输,建设单位运营前应取得相关运输资质,因回收点较多,较分散,因此由各个回收点至贮存厂房不具备固定线路的条件,没有固定路线,运输过程尽量避让敏感区,防止发生事故引起泄漏,引发环境污染。对于进出厂必经线路严格按照有关规定备案,并避让附近居民。

(3) 卸车

收集车辆入厂后进入装卸车位,通过卸油管及油泵将废机油导入厂区油罐中。

(4) 装车、外运

当废机油贮存达到 50 吨后,与具有危险废物运输及处置资质的盘锦兴达沥青有限公司联系,由盘锦兴达沥青有限公司将具有危险废物运输资质的罐车开至厂区卸油位,使用厂区油泵将油罐内废矿物油导入罐车中,装载完毕后运至盘锦兴达沥青有限公司称重、处置。

主要污染工序:

一、施工期:

施工工期主要环境影响为大气:施工扬尘、运输车辆尾气以及涂刷防腐材料产生的少量挥发性有机物(VOCs);水污染物:施工废水及施工人员生活污水;噪声污染:施

题

工设备产生的噪声及运输车辆噪声;固体废物:项目施工产生的建筑垃圾及施工人员产生的生活垃圾。

二、营运期:

本项目营运期产生的环境影响如下:

- 1、大气污染物:废油卸料存储时产生的非甲烷总烃;
- 2、水污染物: 员工生活污水;
- 3、噪声污染: 活性炭净化装置运行风机噪声、卸油泵运行噪声和车辆运输噪声;
- 4、固体废物:生活垃圾、废油桶、废油抹布、废活性炭。

本项目为新建项目,租用岫岩满族自治县八五娟纱闲置用地、场地进行建设,其厂区东侧为凤呈祥再生资源公司厂区空地,隔空地 205m 处为沙河支流; 南侧为凤呈祥再生资源公司厂房,隔厂房 175m 处为沙河; 西侧为空地; 北侧为凤呈祥再生资源厂房。岫岩满族自治县八五娟纱厂建厂较早无相关环保手续,已停产多年。根据建设单位提供土地证可知,用地为工业土地,无原有污染问题。

三、区域环境质量现状、环境保护目标及评价标准

1、空气环境质量现状

本项目环境空气质量现状参照《2021 年鞍山市环境质量报告书》中的鞍山市区环境 空气质量数据。本项目所在区域为大气环境质量二类区,空气质量达标区判定情况如下 表所示。

表 23 区域空气质量现状评价表 (µg/m³)

污染物	年评价指标	年均浓度	标准值	单位	达标情况
SO_2	年平均质量浓度	13	60	$\mu g/m^3$	达标
NO ₂	年平均质量浓度	27	40	$\mu g/m^3$	达标
PM _{2.5}	年平均质量浓度	39	35	$\mu g/m^3$	不达标
PM ₁₀	年平均质量浓度	69	70	$\mu g/m^3$	达标
СО	日均值第 95%百分位 数浓度	1.9	4	mg/m³	达标
O ₃	8h 滑动平均值第 90 百 分位数浓度	131	160	$\mu g/m^3$	达标

综上,区域空气质量现状的 SO₂、CO、NO₂和 PM₁₀的年平均浓度均达标; O₃8h 平均质量浓度能够达标,PM_{2.5}年平均浓度不能满足《环境空气质量标准》(GB3095-2012)中的二级标准,属于不达标区。鞍山地区空气污染类型为烟煤-汽车尾气-城市扬尘复合型污染,冬季锅炉燃煤、汽车尾气等均为导致颗粒物超标原因。针对区域环境质量采取的治理方案为加快调整产业结构,优化城市空间布局;逐步淘汰燃煤小型锅炉;加强机动车环保监管,大力推广清洁能源汽车;完善扬尘污染管理机制,建立健全扬尘排污收费政策;提高秸秆综合利用,实现秸秆资源化等。

本项目评价特征监测因子为非甲烷总烃,引用本项目东南侧 2.294km 处岫岩满族自治县环宇废旧机油回收有限公司年回收 200 吨废旧机油项目于 2020 年 9 月 24 日-9 月 30 日监测数据,项目所在区域大气环境质量监测结果见表 24。

表 24 项目所在地环境空气质量(非甲烷总烃)统计结果 单位: mg/m³

h. /).	项目	数据					= Wall	标准
点位		08:00	14:00	20:00	次日 02:00	单 位	采样时间	值
		0.78	0.81	0.74	0.70	mg/m ³	2020年9月	2.0
		0.70	0.01	0., .	0.70	1118/111	24日	
		0.63	0.77	0.61	0.55 mg/	mg/m ³	2020年9月	2.0
	1 1 1 1	0.03 0.77 0.01 0.33	o mg/m²	25日	2.0			
		0.64 0.58 0.55 0.54	0.54	/ 3	2020年9月	2.0		
			0.38	0.33	0.34	mg/m ³	26日	2.0
E123°08′47.87″				0.46	0.42	$\frac{1}{2}$ mg/m ³	2020年9月	2.0
N 40°07′40.98″		0.53	0.54	0.40			27日	
		圧	0.57	0.61	0.54	0.50	, 2	2020年9月
		0.57	0.61	0.54	0.50	mg/m ³	28日	2.0
		0.62	0.71	0.50	0.52	/ 3	2020年9月	2.0
		0.63	0.71	0.59	0.53	mg/m ³	29日	2.0
		0.51	0.50	0.46	0.42		2020年9月	2.0
		0.51	0.50			mg/m ³	30日	2.0

由表 24 可见,项目所在区域非甲烷总烃的小时值浓度均符合《大气污染物综合排放标准详解》要求。评价区域内非甲烷总烃空气质量良好。

2、地表水环境质量现状

本项目所在区域地表水体为沙河,沙河为 II 类水体,位于本项目南侧 175 米处。本项目地表水环境质量现状参照《2021 年鞍山市环境质量报告书》中的沙河白堡子监控断面主要评价指标监测结果统计数据,区域地表水水质情况如下表所示。

表 25 2021 年沙河监控断面主要评价指标监测结果统计 单位 mg/L

序号	河流名称	监控断面 名称	高锰酸盐 指数	化学需氧 量	氨氮	总磷	氟化物
1	沙河	白堡子	2.4	9.7	0.07	0.031	0.13
标准值			4	15	0.5	0.1	1.0
是否达标			是	是	是	是	是

由表 25 可知,项目所在区域地表水水质满足《地表水环境质量标准》(GB3838-2002) II 类水体标准要求。

3、声环境质量现状

本项目位于声环境质量二类功能区,距离厂界最近敏感保护目标为厂区西北侧93

米处的小堡子居民,厂界外周边 50 米范围内不存在声环境保护目标,不需要进行现状监测。

4、地下水和土壤现状

本项目位于鞍山市岫岩满族自治县龙潭镇相荣村小堡组,租赁八五娟纱厂场地,场地类型为工业用地,根据《建设项目环境影响报告表编制技术指南(污染影响型)》,建设项目存在土壤、地下水环境污染途径的,应结合污染源、保护目标分布情况开展现状调查以留作背景值。辽宁精诚检测技术有限公司于 2023 年 2 月 6 日对项目所在娟纱厂区域土壤环境质量进行监测,监测点位距项目厂界 60m,在项目范围内布设 1 个表层样监测点,监测项目为 GB 36600-2018 表 1 中的 45 个项目和石油烃。监测结果见表 26。

表 26 土壤环境现状检测结果 单位: mg/kg

	***	20 14 127 00 2 H 2 IV	1 1-4-	0 0
	检	测 结	果	
采样点位	项目	数据	单 位	采样时间
	总砷	7.82	mg/kg	
	镉	0.141	mg/kg	
	六价铬	<0.5	mg/kg	
	铜	14	mg/kg	
	铅	35	mg/kg	
T1 E 123°07'42.85"	总汞	0.022	mg/kg	
	镍	22	mg/kg	2023年2月6日
N 40°08′16.07″	四氯化碳	<1.3	μg/kg	2023 4 2)] 0 1
	氯仿	<1.1	μg/kg	
	氯甲烷	<1.0	μg/kg	
	1,1-二氯乙烷	<1.2	μg/kg	
	1,2-二氯乙烷	<1.3	μg/kg	
	1,1-二氯乙烯	<1.0	μg/kg	
	顺-1,2-二氯乙烯	<1.3	μg/kg	

	反-1,2-二氯乙烯	<1.4	μg/kg		
	二氯甲烷	<1.5	μg/kg		
	1,2-二氯丙烷	<1.1	μg/kg		
	1,1,1,2-四氯乙烷	<1.2	μg/kg		
	1,1,2,2-四氯乙烷	<1.2	μg/kg		
	四氯乙烯	<1.4	μg/kg		
	1,1,1-三氯乙烷	<1.3	μg/kg		
	1,1,2-三氯乙烷	<1.2	μg/kg		
	三氯乙烯	<1.2	μg/kg		
	1,2,3-三氯丙烷	<1.2	μg/kg		
	氯乙烯	<1.0	μg/kg		
	苯	<1.9	μg/kg		
	氯苯	<1.2	μg/kg		
	1,2-二氯苯	<1.5	μg/kg		
T1	1,4-二氯苯	<1.5	μg/kg		
E 123°07'42.85" N 40°08'16.07"	乙苯	<1.2	μg/kg	2023年2月6日	
	苯乙烯	<1.1	μg/kg		
	甲苯	<1.3	μg/kg		
	间二甲苯+对二甲苯	<1.2	μg/kg		
	邻二甲苯	<1.2	μg/kg		
	硝基苯	< 0.09	mg/kg		
	2-氯苯酚(2-氯酚)	< 0.06	mg/kg		
	苯并[a]蒽	<0.1	mg/kg		
	苯并[a]芘	<0.1	mg/kg		

	苯并[b]荧蒽	<0.2	mg/kg	
	苯并[k]荧蒽	<0.1	mg/kg	
	崫	<0.1	mg/kg	
	二苯并[a,h]蒽	<0.1	mg/kg	
T1	茚并[1,2,3-cd]芘	<0.1	mg/kg	
E 123°07'42.85" N 40°08'16.07"	萘	< 0.09	mg/kg	2023年2月6日
	苯胺	<0.1	mg/kg	
	石油烃(C10~C40)	11	mg/kg	

由上表可知,项目所在地土壤环境质量能够满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值标准要求,说明该区域土壤质量良好。

辽宁精诚监测技术有限公司于 2023 年 2 月 6 日至 2 月 7 日对项目附近小堡组居民水井地下水质量的现状进行了监测,具体监测结果见表 27。

表 27 地下水监测结果 单位: mg/L

	检测	结果		
样品名称	项 目	数据	单 位	采样时间
	wII /古	6.9	无量纲	2023年2月6日
	pH 值	6.8	无量纲	2023年2月7日
	氨氮	0.141	mg/L	2023年2月6日
本项目附近小堡		0.153	mg/L	2023年2月7日
子村居民水井U1 E 123°07′34.65″		6.91	mg/L	2023年2月6日
N 40°08′25.24″	硝酸盐氮(硝酸盐)	6.17	mg/L	2023年2月7日
	亚硝酸盐氮(亚硝酸盐)	0.002	mg/L	2023年2月6日
		0.003	mg/L	2023年2月7日
	挥发酚类	< 0.002	mg/L	2023年2月6日

			<0.002	mg/L	2023年2月7日
		 	< 0.002	mg/L	2023年2月6日
		育、化力力	<0.002	mg/L	2023年2月7日
		溶解性总固体	285	mg/L	2023年2月6日
		分析 正心 四	298	mg/L	2023年2月7日
		 耗氧量	1.04	mg/L	2023年2月6日
		杜 平(里	1.12	mg/L	2023年2月7日
		石油类	0.02	mg/L	2023年2月6日
		11個天	0.01	mg/L	2023年2月7日
		总大肠菌群	未检出	CFU/100mL	2023年2月6日
		心八껭困旪	未检出	CFU/100mL	2023年2月7日
		氟化物	0.422	mg/L	2023年2月6日
			0.440	mg/L	2023年2月7日
		总硬度	77.0	mg/L	2023年2月6日
			80.7	mg/L	2023年2月7日
	本项目附近小堡	T.	<0.1	μg/L	2023年2月6日
	子村居民水井U1 E 123°07′34.65″	汞	<0.1	μg/L	2023年2月7日
	N 40°08′25.24″	砷	<1.0	μg/L	2023年2月6日
		ин	<1.0	μg/L	2023年2月7日
		短	<0.5	μg/L	2023年2月6日
		镉	<0.5	μg/L	2023年2月7日
		铅	<2.5	μg/L	2023年2月6日
		坩	<2.5	μg/L	2023年2月7日
		铁	< 0.075	mg/L	2023年2月6日

		< 0.075	mg/L	2023年2月7日
	锰	< 0.025	mg/L	2023年2月6日
	tim.	< 0.025	mg/L	2023年2月7日
	2.16.69	< 0.004	mg/L	2023年2月6日
	六价铬	< 0.004	mg/L	2023年2月7日
	77.1	2.20	mg/L	2023年2月6日
	K ⁺	2.60	mg/L	2023年2月7日
	5.21	174	mg/L	2023年2月6日
	Ca ²⁺	173	mg/L	2023年2月7日
	Na ⁺	63.1	mg/L	2023年2月6日
		65.6	mg/L	2023年2月7日
	Mg ²⁺	23.4	mg/L	2023年2月6日
本项目附近小堡 子村居民水井U1		24.8	mg/L	2023年2月7日
E 123°07′34.65″ N 40°08′25.24″	碳酸根离子(CO ₃ 2-)	<1.25	mg/L	2023年2月6日
10 00 23.21		<1.25	mg/L	2023年2月7日
		61.5	mg/L	2023年2月6日
	重碳酸根离子(HCO ₃ -)	50.4	mg/L	2023年2月7日
	写 Alv Han (Cl-)	77.1	mg/L	2023年2月6日
	氯化物(Cl-)	77.7	mg/L	2023年2月7日
		55.1	mg/L	2023年2月6日
	硫酸盐(SO4 ²⁻)	68.3	mg/L	2023年2月7日

由表 27 可以看出,项目所在区域地下水水质均能够达到《地下水质量标准》 (GB/T14848-2017) III类标准,区域地下水环境较好。

1、大气环境

本项目 500m 范围内的大气环境保护目标为小堡组和半截沟居民。

2、声环境

本项目厂界外 50 米范围内无声环境保护目标。

3、地下水环境

本项目厂界外 500 米范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

4、地表水环境

本项目地表水系为沙河和沙河支流,沙河位于本项目南侧 135 米。沙河支流位于本项目东侧 190m。

5、生态环境

本项目场地位于辽宁省鞍山市岫岩满族自治县龙潭镇相荣村小堡组,项目利用原有场地,不涉及自然保护区、风景名胜区、森林公园等生态环境保护目标,占地不在岫岩满族自治县生态保护红线范围内。

表 28 项目主要保护目标

N = 0 NH TV NA H M.							
名称	业 X	Y	· 保护对 象	保护内容	环境功能区	相对厂 址方向	相对厂 址距离 /m
小堡组	510273	4443178	居民区	108 户 居民	《环境空气质量标 准》(GB3095-2012)	西北	93
半截沟	510977	4443037	居民区	9 户居民	及 2018 修改单二级 标准	东北	421
小堡子 村居民 自备井	510267	4443180	居民自备井	居民自备井	《地下水质量标准》 (GB/T14848-2017) Ⅲ类标准	西北	254

污
染
物
排
放
控
制
标
准

	沙河	510435	4442778	沙河	沙河	《地表水环境质量标 准》(GB3838-2002) 中 II 类标准	南	175
3	沙河支流	510664	4442839	沙河	沙河	《地表水环境质量标 准》(GB3838-2002) 中Ⅱ类标准	东	205

表 29 《辽宁省施工及堆料场地扬尘排放标准》(DB21/2642-2016)

监测项目	区域	浓度限值(连续 5min 平均浓度)		
颗粒物(TSP)	郊区及农村地区	1.0		

表 30《大气污染物综合排放标准》(GB16297-1996)

污染物名称	染物名 最高允许排 最高允许排 无组织排放监控浓度限 放浓度, 放速率, 值 mg/m³		标准来源		
141	mg/m ³	kg/h	监控点	浓度	
非甲烷总 烃	120	10	周界外浓 度最高点	4	《大气污染物综合排放标 准》(GB16297-1996)中表 2 标准

表 31 《工业企业厂界环境噪声排放标准》(GB12348-2008)

IZ ##	功能区	米切	标准值 L _{Aeq} (dB)		
区域	切配区	尖 別	昼	夜	
厂界四周	混合区	2 类	60	50	

标

表 32 《建筑施工场界环境噪声排放标准》(GB12523-2011)

类别	昼间	夜间
标准值	70	55

表 33 《挥发性有机物无组织排放控制标准》(GB37822-2019)

污染物名 称	排放限值(mg/m³)	特别排放限值 (mg/m³)	限值含义	无组织排放监控 位置
非甲烷总	10	6	监控点处 1h 平均浓 度值	在厂房外设置监
烃	30	20	监控点处任意一次浓 度值	控点

一般固体废物贮存执行《一般工业固体废物贮存和填埋污染控制标准》 (GB18599-2020); 危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2001) 及 2013 年修改单。本项目将于 2023 年 7 月 1 日后按照《危险废物贮存污染控制标准》 (GB18597-2023) 具体要求实施。

总 量 控 制 指

根据《辽宁省建设项目主要污染物总量指标管理办法(试行)》(辽环发[2015]17 号)及辽宁省生态环境厅发布的《辽宁省生态环境厅关于进一步加强建设项目主要污染 物排放总量指标审核和管理的通知》(辽环综函[2020]380号)中相关要求,结合本项目 实际情况,确定项目实施后的主要污染物即控制因子排放量符合当地环保部门总量控制 指标,同时满足污染物的"双达标"要求。

结合本项目的生产工艺及产污节点,本项目生产过程无生产废水产生,生活污水排 入旱厕,定期清掏用于农田施肥,不外排。本项目供暖使用电采暖。

综上所述,本项目总量控制指标为 COD: 0t/a, 氨氮: 0t/a, NOx: 0t/a, VOCs: 0.00693t/a 总量来源于区域调剂。

四、主要环境影响和保护措施

施工期环境影响分析:

施工工期主要环境影响为大气:施工扬尘、运输车辆尾气以及涂刷防渗材料产 生的少量挥发性有机物(VOCs): 水污染物: 施工废水及施工人员生活污水: 噪 声污染: 施工设备产生的噪声及运输车辆噪声; 固体废物: 项目施工产生的建筑垃 圾及施工人员产生的生活垃圾。

考虑到本项目施工主要是地面防渗、导流渠及事故池的建设及设备安装,且施 工面积较小, 施工期较短, 其产生环境影响很小。

一、噪声影响分析

本项目施工期噪声主要来源于施工机械设备运行时辐射的噪声。考虑到本项目 无大规模土建施工,其噪声一般在90~105dB(A),昼间施工场界噪声达标的干 |m| 批半径在3.8m \sim 39.8m \neq 间, 夜间施工场界噪声达标的干扰半径在21.2m \sim 223.9m, 从施工期噪声对周围环境的影响看,夜间施工会有一定影响。建设单位在施工期必 须严格遵守夜间(22点~次日6点)禁止施工的规定,加强施工管理,减少人为 噪声产生,将施工噪声对周围环境的影响降至最低,并满足相应标准的要求。

此外,从噪声源强可以看出,运输车辆作业中不仅产生的噪声较大,而且流 动性强,因此需要在行车路线、作业时间等方面加以控制。对此,为减少噪声对环 境影响,按照国家和省市有关建筑施工要求,建设单位必须采取如下噪声控制措施:

- ①合理安排施工机械设备组合和施工作业时间,禁止夜间(晚22点至次日早 6点)进行产生环境噪声污染的建筑施工,需连续施工作业的必须在开工前到环保 行政主管部门办理夜间施工审批,施工前应提前3天对周围可能受到影响的居民进 行公示。避免在同一时间集中使用大量动力机械设备,施工过程中,尽量减少运行 动力设备的数量,尽可能使动力机械设备均匀地使用。
- ②施工进行合理布局,对固定高噪声设备采取搭建临时隔声屏,并尽量设置在 远离人群安放,对周围设置隔声屏,避免施工噪声打扰到居民居住。
 - ③选择低噪声的机械设备,并经常进行维护和保养,确保设备正常运行,施工

单位应选用符合国家有关标准的施工机具和运输车辆,尽量选用低噪声的施工机械。振动较大的固定机械设备应加装减振机座,同时应注意对设备的养护和正确操作,尽量使机械噪声维持在最低水平。

- ④设置硬质围栏,封闭施工,加强现场运输管理,运输车辆尽量采用低噪声级的喇叭,并在所经过的道路禁止鸣笛,防止因鸣笛以及施工等带来的人为噪声污染。 合理安排施工计划,避免产生噪声的设备同时开启;要选用较先进的,噪声较小的施工设备,采取设置临时标准围挡,缩短一次开机时间、避免集中作业等减少噪声污染的必要防护措施,将施工噪声的影响减小到最低限度。
- ⑤ 运输车辆尽量绕过居民,必须经过居民时要慢行减速,禁止夜间运输施工材料,严格禁止进、出项目的所有运输车辆鸣喇叭,避免施工噪声影响周围居民的休息。

同时加强施工现场管理,文明施工,减少人为噪声等措施,采取上述措施后,施工噪声可有效降低,将减小对周围环境的影响。

二、环境空气影响分析

本项目施工主要环境影响为:施工扬尘、运输车辆尾气以及涂刷防腐材料产生的少量挥发性有机物(VOCs),考虑到本项目其建筑施工量较小,运输量不大,施工期约1个月,运输产生的交通尾气产生量很小,经大气扩散后,对环境影响不大;涂刷防渗材料主要为地坪及事故池防渗,其防渗面积约为290平,施工面积较小,产生的VOC很少,对环境影响不大。

根据北京市环境科学研究院对7个建筑工程施工工地的扬尘情况的测定,施工场地的扬尘污染情况如下:

- (1)当风速为 2.4m/s 时,工地内 TSP 浓度为上风向对照点的 1.5~2.3 倍,平均 1.88 倍,相当于环境空气质量标准的 1.4~2.5 倍,平均 1.98 倍。
- (2)施工扬尘的影响范围为其下风向 150m 之内,被影响地区的 TSP 浓度平均值为 0.49mg/m³,相当于环境空气质量标准的 1.6 倍。

扬尘的大小与施工管理、气象(特别是风速)条件等密切相关。一般情况下, 建筑施工扬尘对施工场地 100 米范围内影响较大,且扬尘量大小与地面风速的大小 成正比,在大风天气和干旱季节较为严重。参照《防治城市扬尘污染技术规范》(HJ/T 393-2007)、《鞍山市扬尘污染防治管理条例》(2013年11月29日辽宁省第十二届人民代表大会常务委员会第五次会议批准)、《鞍山市城市扬尘污染防治管理规定》(鞍政办发[2002]26号)、《辽宁省扬尘污染防治管理办法》(辽宁省人民政府令第283号)和环保要求,施工中应采取如下必要的控制措施:

- ① 施工期间,施工单位应设置扬尘污染防治公示牌,内容应包括:现场平面布置图(洗车台、道路硬化、堆场料场位置)和工地负责人联系电话、环境保护主管部门。
- ② 施工期间,物料堆放不超出场地,应在工地边界设置2米以上的标准围挡,围挡间无缝隙,并采取防溢措施。
- ③ 施工期间,物料、渣土、垃圾运输车辆的出入口内侧设置洗车平台,洗车平台四周应设置防溢设施,防止洗车废水溢出工地;设置洗车废水沉淀池,并设置相应的排水设施,严禁超标排放。车辆驶离工地前,应在洗车平台冲洗轮胎及车身,其表面不得附着污泥。
- ④ 施工场地出入口须进行路面硬化,硬化路面宽度应与出入口等宽,应采取铺设钢板、混凝土或其他功能相当的材料等措施之一,原则上经过清洗的车辆不应再接触裸露地面。
- ⑤ 进出工地的产尘物料、渣土、垃圾运输车辆应采用密闭车斗。在运输车辆 完成封闭改装前,车斗须采用苫布遮盖,严实密闭,苫布边缘至少要遮住槽帮上沿 以下 15 公分,保证物料、渣土、垃圾等不撒漏。
- ⑥ 工程材料、砂石、土方、废弃物或工地内部裸地等易产生扬尘物质和场所应采取覆盖防尘布、覆盖防尘网、配合定期喷洒粉尘抑制剂和洒水抑尘等措施,防止风蚀起尘。
- ⑦ 施工期间需使用混凝土时,应当使用预拌混凝土,确需现场搅拌的,应采取相应的扬尘防治措施。应组织石材、木制半成品进入施工现场,实施装配式施工,减少因切割石材、木制品加工所造成的扬尘污染。
 - ⑧ 施工期间,应对工地建筑结构脚手架外侧设置密目式安全网。施工期间,

工地内建筑上层具有粉尘逸散性的工程材料、渣土或废弃物输送至地面或地下楼层时,须采用密闭的方式输送,禁止高空抛掷、扬撒。

- ⑨ 天气预报 4 级风以上天气应停止产生扬尘的施工作业,例如土方工程、拆除作业等。
- ⑩ 应有专人负责逸散性材料、垃圾、渣土、裸地等密闭、覆盖、洒水作业和车辆清洗作业,并记录扬尘控制措施的实施情况。
- ① 施工结束后,建设单位应对施工现场及时进行清理,实施裸地绿化和裸地硬化,减少裸露地面,减轻扬尘污染。

采取上述措施后,项目施工产生的扬尘对周围环境的污染可大大降低,可以满足辽宁省《施工及堆料场地扬尘排放标准》(DB/21 2642-2016)的要求,对环境的影响较小。

三、固体废物影响分析

本工程将产生一定量的建筑垃圾,建设单位必须严格按《鞍山市城市市容和环境卫生管理条例》规定,严禁私自排放固体废物,并做到建筑垃圾应日产日清,严禁随意抛撒建筑垃圾。严禁私自排放固体废物。运输固体废物的车辆要封闭运输,防止扬尘等二次污染。本项目产生的建筑垃圾送至指定地点处置,本项目施工期固体废物均得到妥善处置,对环境的影响较小。

四、水环境影响分析

本工程施工期产生的水环境污染主要为清洗搅拌设备排放的含泥浆废水及施工人员产生的很少量的生活污水,随意排放将对区域水环境质量造成的污染;为此建设单位在施工期间应设置简易沉淀池,不得外排;同时做好建筑材料和建筑废料的管理,避免地表水体二次污染,则本项目施工期产生的废水不会对区域水环境质量产生大的影响。

2.营期环境影响和保护措施

项目运营期产生的主要污染物包括废气、废水、噪声及固体废物。

一、废气影响分析

考虑到收集过程采用小口径钢筒承装,其挥发的有机废气量很小,对环境影响不大,因此,项目运营期产生的废气主要为装卸过程储罐大小呼吸产生废气,其主要污染因子为非甲烷总烃。

1、源强核算

(1) 储罐大小呼吸废气

储罐大呼吸是储油罐收发油作业中产生的油品蒸气损失,由于输转油品致使储罐排出油蒸汽。储罐小呼吸主要发生在储罐没有收发油作业的情况下,受外界气温、压力变化引起罐内气体空气温度、油品蒸发速度、油气浓度和蒸汽压力发生变化,从而致使储罐排出油蒸汽。

① 储罐大呼吸产生非甲烷总烃

 L_w =4.187×10⁻⁷×P×M× K_N × K_C × V_L

式中: Lw——固定顶罐工作损失, kg/m³投入量;

P——在大量液体状态下,真实的蒸汽压力(pa),本次环评取 2910Pa;

M——储罐内蒸汽的分子量, g/mol; 按 92.14 计;

 K_N ——周转因子(无量纲);取值按年周转次数K确定。K>220, K_N =0.26, $K\le36$, K_N =1,36< $K\le220$, K_N =11.467×K-0.7026;本项目周转次数为 10,故 K_N =1

K_c——产品因子(石油原油取 0.65, 其他有机液体取 1.0), 本项目取 1

V_L——年入罐量,单位m³·a;本项目约为 568m³·a

本项目废矿物油库房内实际储存量 500 吨,经计算可知,储罐大呼吸产生的非甲烷总烃为 63.781kg/a(0.064t/a)。本项目年营业 300 天,卸油倒灌周转工作每日平均 2 小时,废气经过二级活性炭装置吸附净化后,不低于 15 米高排气筒排放,设备捕集率可达 90%以上,净化效率可达 90%,则本项目有组织产生量为 0.0576t/a,无组织产生量为 0.0064t/a,详见表 34~35。

② 储罐小呼吸产生非甲烷总烃

本项目采用的储罐为固定顶罐,固定顶罐的工作排放可用下式估算其污染物的排放量:

 $L_B=0.191\times M\times (P/(100910-P))^{0.68}\times D^{1.73}\times H^{0.51}\times T^{0.45}\times Fp\times C\times K_C$

式中: L_B——固定顶管呼吸排放, kg/a;

M——储罐内蒸汽的分子量,92.14g/mol;

P——在大量液体状态下,真实的蒸汽压力(pa),本次环评取 2910Pa;

D——储罐直径, m;

H——平均蒸汽空间高度, m; 本次取 0.3m;

T——日环境温度变化的平均值, \mathbb{C} , 本次取 10 \mathbb{C} ;

Fp——涂料系数,本项目取 1.25

C——小直径储罐的修正系数,直径在 $0\sim9m$ 之间的罐体,C=1- $0.0123\times$ (D-9) ²,罐径大于 9m 的,C=1:

Kc——产品因子(石油原油 Kc 取 0.65, 其他有机液体取 1.0)

本次油罐直径为 2400mm, 经计算可知,储罐小呼吸产生的非甲烷总烃约为 6.48kg/a,本项目 2 个储罐,则储罐小呼吸产生的非甲烷总烃约为 0.013t/a。本项目 年营业 300 天,24 小时运营,废气经过二级活性炭装置吸附净化后,不低于 15 米 高排气筒排放,设备捕集率可达 90%以上,净化效率可达 90%,则本项目有组织产生量为 0.0117t/a, 无组织产生量为 0.0013t/a,详见表 34~35。

综上所述,装卸过程储罐大小呼吸非甲烷总烃产生量总计约 0.077t/a。

本项目要求建设单位采用固定卸油点,并设置储罐油气收集系统,密封状态下集气捕集率可达到90%,捕集风量500m³/h,捕集的非甲烷总烃集中经一套二级活性炭净化装置后,由1根不低于15m排气筒高空排放,活性炭净化效率不低于90%。

则本项目废油卸料时产生的非甲烷总烃产生排放情况详见下表:

表 34 本项目非甲烷总烃有组织排放情况

大呼吸	非甲	192	0.0576	0.096	90	19.2	0.00576	0.0096	600
小呼吸	烷总 体	3.25	0.0117	0.0016	90	0.325	0.00117	0.00016	7200
合计	•	/	0.0693	0.0976	/		0.00693	0.00976	/
*有组织产生量以总产生量 90%计									

表 35 本项目非甲烷总烃无组织产生及排放情况

产生工序	污染物名称	产生量(t/a)	产生速率 (kg/h)	排放量(t/a)	排放速率 (kg/h)
大呼吸	北田岭台林	0.0064	0.0107	0.0064	0.0107
小呼吸	非甲烷总体	0.0013	0.0002	0.0013	0.0002
合	· it	0.0077	0.0109	0.0077	0.0109

由上表可知,本项目卸油过程产生的非甲烷总烃,经二级活性炭装置处理后,经不低于 15m 高排气筒排放,有组织排放浓度及排放速率均可满足《大气污染物综合排放标准》(GB16297-1996)要求,对环境影响不大。

参照《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019)中独立危废贮存罐可行技术要求"入炉焚烧;化学清洗、UV光解、活性炭吸附等的组合技术",因此,本项目采用的二级活性炭符合排污许可申请与核发技术规范推荐的可行技术,项目落实后可保证稳定达标排放。

大气污染物及污染物治理设施信息见下表

表 36 大气污染物及污染物治理设施信息表

产排污节点	污染物	污染治理 设施	排放强度 (kg/h)	执行标准	是否达标
		二级活性	0.00976	《大气污染物综合 排放标准》 (GB16297-1996) 120mg/m³ (10kg/h)	是
储罐装卸油	非甲烷总烃	封闭厂房	0.0109	《挥发性有机物无 组织排放控制标 准》 (GB37822-2019) 《大气污染物综合 排放标准》 (GB16297-1996)	是

表 37 大气排放口基本情况表

				排放口力	也理坐标		排		污染物排放	女标准	
排放口编号	排放口名称	类型	污染物种类	X	Y	排气筒高度m	气筒出口内径 m	排气温度℃	名称	浓度 限值 mg/m 3	速率 限值 kg/ h
DA00	活性炭净化排放口	一般排放口	非甲烷总烃	510457.8 5	4442965. 72	1 5	0.	常温	《大气污染物综 合排放标准》 (GB16297-1996)	120	10

表 38 大气污染物无组织排放情况表

编号		1		
名称		储油厂房		
西源却占从坛/	X		510445	
面源起点坐标/m	Y		4442969	
面源海拔高度/m			111	
面源长度/m			25	
面源宽度/m			10	
面源有效排放高度	/m	4		
排放工况		正常		
污染物排放速率		非甲烷总烃 0.0109kg/h		
>>> > > > > > > > > > > > > > > > > >		厂房外浓度最 高点	《挥发性有机物无组织排放控制标准》(GB37822-2019) (6.0mg/m³)	
污染物排放标准		厂界外浓度最 高点	《大气污染物综合排放标准》 (GB16297-1996) 4.0(mg/m³)	

本项目无组织排放管控采用二级活性炭系统管控措施,收集处理无组织排放量

较小,能够满足《挥发性有机物无组织排放控制标准》(GB37822-2019)及《大气污染物综合排放标准》(GB16297-1996)中无组织排放标准要求,本项目无组织排放的非甲烷总烃对环境影响较小。

企业应根据《排污口规范化整治技术要求(试行)》(环监[1996]470 号)要求设置标准化排污口。

根据本项目实际情况,待项目建成运行后,建议企业定期委托有资质的环境监测机构对企业进行定期监测。按照《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)要求,本项目监测如下:

	* 1—20211			
排放形式	监测点位	监测因子	监测频次	
有组织	DA001 二级活性炭净化排放口	非甲烷总烃	1 次/半年	
无组织	上风向1个,下风向2~3个	非甲烷总烃	1 次/半年	

表 39 项目废气监测要求

(4) 非正常工况污染物排放情况

非正常工况排污指开停车、部分设备检修时排放的污染物及工艺设备或环保设施达不到设计规定指标时排放的污染物。

经分析本项目非正常工况为活性炭装置出现故障,以净化效率为0%计。

当发生上述非正常情况时,生产车间将立即开始维修,整个过程大约需 0.5 小时,当检修复原后再开始正常生产,非正常工况废气污染物的排放情况见下表:

序号	非正常排放源	污染物种类	非正常排放原因	非正常排 放浓度 /mg/m ³	非正常 排放速 率 kg/h	单次 持续 时间 /h	频次 次/a	措施	达标情况
1	DA001	非甲烷总 烃	活性炭装置出现 故障	192	0.0976	0.5	1	停产 检修	超标

表 40 非正常工况废气污染物排放情况一览表

由上表可知,当发生上述非正常情况时,其排放污染物超标,对环境将造成一定污染,因此,发生故障时应及时停产检修。建设单位必须加强管理,定期检查治理措施运行情况,保证设备稳定达标运行,杜绝非正常工况运行。

2、卫生防护距离

以储油厂房为面源。储罐卸油非甲烷总烃无组织排放总量为 0.0109kg/h, 储油厂房长 16.25m, 宽 16m, 高 4m。

 序号
 面源名称
 污染物
 源强
 环境标准浓度限值
 备注

 1
 储油厂房
 NMHC
 0.0109kg/h
 2.0mg/m³
 《大气污染物综合排放标准详解》

表 41 项目卫生防护距离计算面源

根据《大气有害物质无组织排放卫生防护距离推导技术导则》(GB/T 39499-2020)中有关规定,各类工业、企业卫生防护距离按下式计算:

$$\frac{Q_c}{C_m} = \frac{1}{A} \left(BL^c + 0.25r^2 \right)^{0.5} L^D$$

式中: O。—工业企业有害气体无组织排放量可以达到的控制水平;

Cm—标准浓度限值;

L—工业企业所需卫生防护距离, m;

R —有害气体无组织排放源所在生产单元的等效半径,m。根据该生产单元占地面积 $S(m^2)$ 计算,R=8.92m

A、B、C、D—卫生防护距离计算系数,无因次,根据工业企业所在地区近五年平均风速及工业企业大气污染源构成类别确定,其卫生防护距离计算系数为 A=350、B=0.021、C=1.85、D=0.84m。

依据上述公式,以贮存仓库为单元计算卫生防护距离,结合项目无组织污染物排放情况及当地有关气象条件,确定各污染物的排放参数。

表 42 本工程卫生防护距离计算参数

序号	计算系数	五年平均风速	L≤1000
1	A	2~4	350

2	В	>2	0.021
3	С	>2	1.85
4	D	>2	0.84

根据工程分析,本项目车间厂房 NMHC 无组织排放量为 0.0109kg/h,按照上述的企业卫生防护距离计算公式进行计算:

表 43 卫生防护距离计算结果

序号	面源名称	污染物	计算值	卫生防护距离
1	储油厂房	NMHC	4m	50m

根据上述分析,本项目需要设置的卫生防护距离为 50m。项目卫生防护距离 内无保护文物、风景名胜区、水源地和生态敏感点等敏感目标,符合卫生防护距离 要求。环评要求项目卫生防护距离范围内未来不得规划居民住宅、学校、医院等敏 感目标。卫生防护距离详见附图 5。

二、废水环境影响分析

本项目为废机油回收暂存中转项目,危废贮存厂房只是作为废旧资源临时暂存、转运场所。正常情况下,项目运营期危废贮存厂房不进行地面清洗,无清洁用水。本项目不涉及容器清洗,本项目不设置员工洗浴设施,员工在作业中需穿着防护服,配备劳保用品,正常情况下不涉及废机油泄漏,防护服不需清洗,定期更换。废机油卸油点位于封闭贮存厂房内,不露天装卸,无初期雨水。综上,项目无生产废水产生。

本项目职工定员为 5 人,依据《辽宁省行业用水定额》(DB21/T1237—2020),生活用水按 45L/人·d 计,生活用水量约为 0.225m³/d,则年用水量为 67.5m³/a,排水按用水量的 80%计算,生活污水排放量为 0.18m³/d(54m³/a)。生活污水排入旱厕,定期清掏,用于农田施肥,不外排。清掏周期为 3 个月一次,设置旱厕容积为 20m³,可以满足项目要求。

三、噪声源分析

项目主要噪声为油泵运行噪声、风机运行噪声。根据相关类比资料,本项目主要噪声源及源强见表 44。

表	44	主要噪声源强
~	77	1. 4. 76 / 106 / 13

序号	设备名称	数量(台)	持续时间(h/d)	类型	源强 (dB)	污染防治措施
1	油泵	2 用 2 备	≤2	固定声源	80	建筑隔声
2	风机	1	≤24	固定声源	85	建筑隔声

本项目位于岫岩满族自治县龙潭镇相荣村小堡组,噪声源主要在装卸区及贮存厂房内活性炭装置风机、油泵,厂房为砖混 37 墙体结构,建筑隔声能够达到 25dB 以上。本项目贮存厂房距厂界四周距离见下表 45:

表 45 贮存厂房距厂界四周距离

序号	厂房	东侧(m)	南侧(m)	西侧(m)	北侧(m)
1	厂房	7.6	1	3	1

本项目的噪声源均为室内声源,项目拟采取的噪声控制措施主要是加强管理,禁止鸣笛。项目投产后仅在昼间运行,故本环评只对项目厂界昼间噪声进行预测,噪声预测点分别设在厂界东、西、南、北外 1 米处。

参考冶金工业出版社出版的《工业企业环境保护》 α 取 0.08; 厂房透声系数取 10^{-2} , 门的透声系数为 $10^{-2.5}$; O 值取 2。

按照《环境影响评价技术导则 声环境》(HJ2.4-2021)中规定的点源模式进行预测,预测按所有设备均运行。为了简化计算,本报告不按照倍频带声压级分别进行详细的计算,只是简化为按照 A 声级进行预测。预测方法如下:

(1) 室内声源等效室外声源的计算方法:

$$L_{pi} = L_w + 10 \bullet \log(\frac{Q}{4\pi r^2} + \frac{4}{R})$$

式中: Lpi — 某个室内声源在靠近围护结构处的声压级, dB;

Lw — 某个声源的声功率级, dB:

r — 室内某个声源与靠近围护结构处的距离, m;

Q — 方向性因子;通常对无指向性声源,当声源放在房间中心时,Q=1; 当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4;当放在三面墙夹角处时,Q=8;

R — 房间常数, 按下式计算:

$$R = \frac{S\overline{\alpha}}{1 - \overline{\alpha}}$$

$$S = \sum S_k$$

式中: S — 房间的总表面积, m2。

α— 平均吸声系数, 取 0.08。

(2) 室内所有声源在靠近围护结构处的合成声压级(L₁)

$$L_1 = 10 \log(\sum_{i=1}^{n} 10^{0.1 L_{pi}})$$

(3) 外靠近围护结构处的声压级(L₂)

$$L_2 = L_1 - (TL + 6)$$

式中: TL - 隔墙的传输损失, 按下式计算:

$$TL = 10 \log \frac{\sum S_k}{\sum \tau_k \bullet S_k}$$

式中: Sk — 传声的围护结构面积, m²;

τ_k — 围护结构的透声系数

(4) 将室外声级 L₂和透声面积换算成等效的室外声源,公式如下:

$$L_{w2} = L_2 + 10 log S$$

(5) 计算等效室外声源传播到预测点的声压级(Li)

$$L_i = L (r_0) - (A_{div} + A_{bar} + A_{atm} + A_{exc})$$

$$L(r_0) = L_{W2} - 20logr_0 - 8$$

$$A_{div} = 20log (r/r_0)$$

式中: Li—等效室外声源在预测点的声压级;

 $L(r_0)$ — 等效室外声源在参考位置 r_0 处的声压级;

Adiv — 声波几何发散引起的衰减量;

Abar — 遮挡物引起的衰减量;

A_{atm} — 空气吸收引起的衰减量;

Aexc — 附加衰减量。

根据本评价的实际情况,后三项在计算中予以忽略,仅考虑几何发散。

(6) 计算各等效室外声源在预测点产生的等效声级贡献值(Legg)

$$L_{eqg} = 10 \lg(\frac{1}{T} \sum_{i=1}^{n} t_i 10^{Li/10})$$

式中: Leag—室外声源在预测点产生的等效声级贡献值, dB;

n—等效室外声源个数。

T—预测计算的时间段, S:

ti—i 声源在 T 时段的运行时间, S。

预测点 时段 贡献值 达标情况 标准 东厂界 达标 昼间 33 60 达标 南厂界 昼间 38 60 西厂界 达标 昼间 34 60 北厂界 昼间 39 达标 60

表 46 噪声预测结果单位: dB(A)

从以上分析和表 46 中预测结果可以看出,本项目生产期间厂界昼间噪声贡献 值能够达到《工业企业厂界环境噪声标准》中(GB12348-2008)2 类区标准要求, 项目排放噪声对区域声环境质量影响不大。

依据《排污单位自行监测技术指南 总则》(HJ 819-2017),本项目噪声监测计划如下:

	监测点		W. Malast H	11. No. 15 ->-	
分类	位置	个数	监测项目	监测频率	
噪声	厂界外1米处	4	连续等效 A 声级	1 次/季度	

表 47 项目污染源及环境监测计划

四、固体废物影响分析

本项目产生的固体废物情况如下:

生活垃圾

本项目生活垃圾产生量为按 0.5kg/d·人计,本项目职工人数为 5 人,则项目生

活垃圾产生量为 0.75t/a, 委托环卫部门定期清运处理。

废油抹布产生量约 0.01t/a, 混入生活垃圾无法分离, 依据《国家危险废物名录 (2021 年版)》, 属于豁免危险废物, 由环卫部门定期清运处理。

本项目生活垃圾能得到妥善处置,不随意排放,对环境影响不大。

废油桶

本项目收集时,废机油采用小口径钢桶承装,其使用过程中,会产生一定量的废油桶,属于危险废物,危废代码为 HW08,900-249-08,根据企业提供资料,废油桶产生量约为 2 个/a,暂存于危废间内,后委托有资质部门处置。

废活性炭

本项目吸附非甲烷总烃采用活性炭吸附,选取颗粒状活性炭,碘值为800以上密度约为600kg/m³,饱和吸附量约为30%,年吸附非甲烷总烃约0.062t/a,需要活性炭0.21t/a,本项目设活性炭装置,每2.5月更换一次,一年更换4次,一次填充量53kg,年用活性炭0.212t/a,则年产废活性炭0.274t/a。为危险废物(HW49,900-039-49),更换后危废暂存间暂存,后委托有资质部门处置。固废产生与处置情况见下表48。

表 48 项目危险废物汇总表

序号	产生环节	名称	属性	废物代码	主要有毒物质成分	物理性状	环境危险特性	产生量	贮存方式	利用 处去 向	利用或处置量	备注
1	活性炭净化装置	废活性炭	危险废 物 (HW49)	900-039-49	有机物	固态	Т	0.274 t/a	暂存危废间	委有质位置	0.274. t/a	

2	收集	废油桶	危险废 物 (HW08)	900-249-08	有机物	固态	T	2 个/a	暂存危废间	委有质位置 光资单处置	2 个/a		
---	----	-----	--------------------	------------	-----	----	---	-------	-------	-------------	-------	--	--

表 49 项目固体废物产生及处置情况汇总表

序号	产生工序	主要固 废名称	产生量	类别	处置情况
1	活性炭净 化装置	废活性 炭	0.274t/a	危险废物(HW49 900-039-49)	危废暂存间暂存,定期委 托有资质单位处理
2	收集	废油桶	2 ↑ /a	危险废物(HW08 900-249-08)	尤 有 页原 甲位 处理
3	职工生活	生活垃圾	0.76t/a	生活垃圾	集中收集后,环卫部门统 一清运处理

固体废物环境管理

建设单位应严格按照《中华人民共和国固体废物污染环境防治法》(2020修订)要求,建立健全工业固体废物产生、收集、贮存、运输、利用、处置全过程的污染环境防治责任制度,建立工业固体废物管理台账,如实记录产生工业固体废物的种类、数量、流向、贮存、利用、处置等信息。委托他人运输、利用、处置工业固体废物的,应当对受托方的主体资格和技术能力进行核实,依法签订书面合同,在合同中约定污染防治要求。

本项目危废暂存间位于厂房北侧,面积 5m²,危废暂存间应严格按照《危险废物贮存污染控制标准》中的有关要求进行设置:

- ①危废暂存间采取防风、防雨、防晒、防流失、防渗漏的"五防措施";并设置 危险废物标志牌;
- ②暂存间应符合《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(2023年7月1日后执行GB18597-2023)的要求,地面与裙脚要用坚固、防渗材料建筑,建筑材料必须与危废相容;
 - ③暂存间基础必须进行防渗处理,地面自下而上采用防护垫层、2mmHDPE 膜

- +保护层+水泥硬化,渗透系数小于 1×10⁻¹⁰cm/s;
- ④暂存间必须按《环境保护图形标志—固体废物贮存(处理场)》(GB15562.2)及《危险废物识别标志设置技术规范》(HJ1276-2022)的要求标识环保标志;
 - ⑤禁止将危险废物混入一般废物中;
- ⑥与有资质的处理处置单位签订处理协议,采用联单制由有资质的单位定期上门清运处理。

对于本项目所产生的上述固体废物,危险废物收集后委托有资质的单位处理,并做好台账,记录转运情况,符合国家有关危险废物处置的有关规定和标准要求。

生活垃圾收集后由生活垃圾由环卫部门清运处置,均符合国家有关一般性固体 废物处置的有关规定和标准要求。

五、地下水、土壤

本项目对土壤、地下水环境影响主要为事故时废机油储罐发生泄漏,通过地面 漫流、垂直入渗等方式对厂区土壤和地下水质量造成一定的污染。本项目采取以下 防控措施:

(1)根据污染物泄漏的途径和生产功能单元所处的位置,厂区可划分不同污染防治区。建设严格按照《危险废物贮存污染控制标准》(GB18597-2001)及其修改单要求(2023年7月1日后执行GB18597-2023),项目占地范围内的地面厂区全部硬化处理,储油罐区、卸油区、危废间、事故池及厂房整体进行重点防渗,其余区域作一般防渗处理。储罐区设置围堰,卸油区设置导流沟,厂房外设置截流沟,防止泄漏油品沿地表漫流对土壤及地下水产生影响。

表 50 项目分区防渗情况汇总

序号	区域名称	防渗面积	采取的防渗措施	分区 类别
1	厂房整体(储罐 区、卸油区、危 废间、导流沟、 截流沟)	250m ²	防渗层为至少 1m 厚黏土层(渗透系数小于 1×10 ⁻⁷ cm/s)或 2mm 厚的其他人工材料,渗透 系数小于 1×10 ⁻¹⁰ cm/s;	重点防渗
2	事故池	40m ² (100m ³)	示数小 1^10 Cll/8;	
3	其他区域(办公 室、旱厕)	10m ²	采用防渗混凝土防渗,混凝土防渗等级不小于 S6	一般防渗

为进一步预防地下水和土壤污染,环评要求建设单位按照防渗分区要求做好防

渗,并开展地下水监测。当日常监测中发现厂区发生废机油泄漏事故或者地下水中任一特征指标超标,需开展地下水环境调查,确定是否发生污染、污染程度和范围。当地下水中废机油特征污染物的浓度超过《地下水质量标准》(GB/T 14848-2017)III类标准,或者检出未列入上述标准的特征污染物时,须开展地下水污染健康风险评估。当致癌风险或危害水平不可接受时,确定控制和治理目标,开展地下水污染控制和治理。

采取以上措施后,可确保项目在生产过程废机油不会通过地表下渗影响土壤和地下水水质,不会对区域内土壤和地下水水质产生影响,对地下水及土壤环境影响不大。依据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)项目地下水跟踪监测要求如下。

表 51 项目地下水及土壤跟踪监测要求

监测类别	监测点位	监测项目	监测频次
地下水	项目下游设地下水监测井一座	石油类	1 次/半年

六、生态

本项目不新增占地,且用地范围内无生态环境保护敏感目标,故无需进行生态 评价。

七、风险

(一) 风险调查

本项目风险物质主要为废机油,依据《建设项目环境风险评价技术导则》(HJ/T 169-2018),临界值 2500t。本项目涉及重点关注的危险物质及临界量表如下:

表 52 本项目风险物质理化性质及储存情况

名称	理化性质	危险性
机油	淡黄色粘稠液体,溶于苯、乙醇、乙醚、氯仿、丙酮等多数有机溶剂。自燃点(℃)300~350,相对密度(空气=1)0.85,相对密度(水=1)934.8,闪点(℃):120~340,可燃液体,火灾危险性为丙 B 类;遇明火、高热可燃,急性吸入,可出现乏力、头晕、头痛、恶心,严重者可引起油脂性肺炎。慢接触者,暴露部位可发生油性痤疮和接触性皮炎。可引发神经衰弱综合征,呼吸道和眼刺激症状及慢性油脂性肺炎。	可燃液体

表 53 重点关注的危险物质及临界量表

物质名称	临界量(吨)	备注
废机油	2500	油类物质

(二)环境敏感目标调查

项目位于岫岩满族自治县龙潭镇相荣村小堡组,附近敏感目标主要为龙潭镇相荣村居民和附近的沙河。

(三) 评价等级

- 1、P的分级确定
- (1) 危险物质数量与临界量比值(Q)

项目废机油为最大储存量为 50t,根据《建设项目环境风险评价技术导则》(HJ 169-2018),单元内存在多种危险物质时,按下式计算物质总量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q1, q2......qn—每种危险物质的最大存在总量, t;

Q₁, Q₂.....,Q_n—每种危险物质的临界量, t。

当 O<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

表 54 危险物质及 O 值判定结果

	** - /		<u> </u>	
序号	危险物质名称	最大存在总量 qn(t)	临界量 Qn(t)	危险物质 Q 值
J				
1	废机油	50	2500	0.02
	0.02			

本项目危险物质 Q<1, Q 值划分为 Q<1, 本项目环境风险潜势为 I。

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目环境风险为简单分析。

表 55 最大可信事故确定

项目	火灾、爆炸性、毒性	最大可信事故	
废机油	火灾	管理不善引起的火灾	
	泄漏	污染地下水体及土壤	

(四)风险识别

风险事故情形分析

本项目不涉及废机油加工处置,主要风险来自收集过程和贮存过程。

A.一次风险

本项目不对废机油进行加工。项目回收的废机油经过专门的车辆运送至贮存仓库,收集废机油采用小口径防渗防漏钢桶承装,厂区内采用防渗防漏油罐存储,一般不会产生废机油泄漏,因此正常运营过程中不会有大气污染物排放,不会对周边环境产生影响。如不慎在储运过程中对油桶造成了损伤,其风险主要体现废机油的泄漏。因此本项目要求加强管理,并配备吸油毯、备用桶、消防沙等应急设施,防止泄漏的前提下,项目发生泄漏的风险较小。

B.二次风险

主要体现在废机油的火灾。

火灾的原因主要为储存、转运过程中管理不善,遇明火产生的火灾,其对环境 影响较大。

C.运输风险

本项目运输风险主要为人工转运或交通事故过程造成车辆倾覆,使废机油进入 水体、土壤及大气,从而对环境造成危害。

- (五)环境风险防范措施及应急要求
- A.收集运输过程风险防范措施
- (1)必须严格按照国家法律法规及地方规定,对危险废物收集及运输过程进行管理:
 - (2)在废机油收集过程中,建设方须配备专业的运输车辆对其进行收集:
- (3)合理规划运输路线及运输时间,尽可能避免运输废矿物油的车辆穿越学校、 医院和居住小区等人口密集区域,并尽可能远离河道、水渠等敏感区域,危险货物 运输应当按照道路运输管理机构许可的经营范围进行运输,悬挂危险货物标志,并 向当地的公安、消防、环保及危险废物管理部门备案;
 - (4)在起运前应当对承运的危险货物及包装进行外观检查,确保没有影响安全运

输的明显缺陷、泄漏及破碎;并配备吸油毯、消防沙等应急设备设施。一旦发生漏油事故,立刻采用消防沙封堵,吸油毯吸附,防止对环境影响,且产生的废物为危险废物,委托有资质部门处置。

(5)对负责收集及运输的人员进行岗前安全教育培训,确保员工经考核合格后上岗作业,并每月对员工进行日常安全教育培训:

B.外运运输风险防范措施

外运转运的风险责任单位由承担该危险废物的运输单位负责,本次工程交由资质的公司为运输风险责任单位,不在本评价范围内,仅根据《危险废物收集贮存运输技术规范》(HJ2025-2012),对运输过程的安全管理提出如下要求:

- (1)根据《危险废物转移管理办法》的规定,必须办理危险废物转移联单手续。
- (2)每转移一车(次),应按每一类危险废物填写一份联单。运转时应持联单第一联及其余各联转移危险废物:
- (3)企业应如实填写联单的运输单位栏目,并将第一联、第二联副联、第三联、 第四联、第五联随转移的废机油交付给乙公司(危险废物处置单位),将废矿物油 送达后,还应存档交付的联单第三联;
 - (4)车辆必须悬挂"危险废物"字样及相应标志:
- (5)运输危险废物的车辆应配备 GPS 设备,严格遵守交通、消防、治安等法规,并应控制车速,保持与前车的距离,严禁违章超车,确保行车安全。驾驶人员一次连续驾驶4小时应休息 20 分钟以上,24小时之内实际驾驶时间累积不超过8小时;
- (6)运输中使用专用车辆,严禁采用三轮机动车、全挂汽车列车、人力三轮车、 自行车和摩托车装运废矿物油;
- (7)必须配备随车人员在途中经常检查,如有丢失、被盗,应立即报告发生地的交通运输、环保主管部门,高速公路上发生丢失、被盗,应立即报告告诉巡警,并由交通运输主管部门会同丢失发生地的公安部门和环保部门查处;
- (8)运达卸货地点后,因故不能及时卸货,在待卸期间行车和随车人员应负责看管车辆和所装危险废物;
 - (9)运输车辆应取得危险废物运输经营许可证,运输、装卸应符合《汽车危险货

物运输、装卸作业规定》(JT617-2004)的有关规定。

C.泄漏事故、水质污染事故防范措施

贮存过程事故风险主要是设备泄漏、水质污染等事故,因设备泄漏引发环境污染,企业应加强工作人员危险品贮存、使用防范事故的常识教育,明确各岗位的职责,实行事故防范的岗位责任制。根据《危险废物收集、贮存、运输技术规范》(HJ2025-2012)、《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(环境保护部 2013 年第 36 号)(2023 年 7 月 1 日后执行 GB18597-2023)要求如下:

- (1)加强管理,避免转运和贮存时发生泄漏。
- (2)严格按贮存要求设计。装卸区应设置导流沟。地面与裙脚要用坚固、防渗的材料建造,建筑材料必须与危险废物相容。用以存放装载液体危险废物容器的地方,必须有耐腐蚀的硬化地面,且表面无裂隙。应设计堵截泄漏的裙脚,地面与裙脚多围建的容积不低于堵截最大容器的最大储量或总储量的五分之一。应只有一个入口,并且在一般情况下,应关闭此入口以避免灰尘的扩散。应设立负压排气系统。
- (3)贮存危险化学品的仓库管理人员,必须经过专业知识培训,熟悉贮存物品的特性、事故处理办法和防护知识,持证上岗,同时,必须配备有关的个人防护用品。
- (4)盛装容器上必须粘贴相应危险废物标志。危险废物贮存设施都必须按环境保护图形标示《固体废物贮存(处置)场》(GB15562.2-1995)及《危险废物识别标志设置技术规范》(HJ1276-2022)的规定设置警示标志。库房、场所的消防设施、用电设施、防雷防静电设施等必须符合国家规定的安全要求。危险废物场所必须有专人 24 小时看管。
- (5)如实记载每批废机油的名称、来源、数量、特征和包装容器的类别、入库日期、存放库位、出库日期及接收单位名称。该记录在危险废物转运后应继续保留三年。出入库必须检查验收登记,贮存期间定期养护,控制好贮存场所的温度和湿度;装卸、搬运时应轻装轻卸,注意自我防护。定期对所贮存的容器及贮存设施进行检查,发现破损,及时采取措施清理更换。
- (6)要严格遵守有关贮存的安全规定,具体包括《仓库防火安全管理规定》、《建 筑设计防火规范》等。仓库内配备足够数量的消防设备、干粉灭火器等,值班人员

应经过培训,除了具有一般消防知识之外,还应熟悉种类、特征、贮存地点、事故的处理程序及方法。

- (7)厂房内灯具必须为冷光源,防爆灯具。
- (8)风险三级防控措施。

第一级防控措施是油罐四周设置围堰,围堰高度 300mm,构成生产过程中环境安全第一级防控网,形成事故下状态下的一级缓冲,防止轻微泄漏事故造成的环境污染。项目储罐设有围堰容积为 36.45m³(规格 13.5m*9m*0.3m),去除储罐占用容积(7.5*2.4*0.3*2=10.8m³)后,有效容积为 25.65m³,可满足单罐最大存储量要求。

第二级防控措施: 事故状态下泄漏废油及消防废水排入事故池贮存。

第三级防控措施: 厂区实行雨污分流,设置雨排水截流沟,雨水设有总阀门。 总阀采用电动阀,设于地下阀井处,一旦出现事故立即关闭。

参照《石化企业水环境风险防控技术要求》(Q/SH0729-2018),本项目事故废水进行核算公式为:

 $V = (V_1 + V_2 - V_3)_{max} + V_4 + V_5$

注:(V₁+V₂-V₃)_{max}是指对收集系统范围内不同罐组或装置分别计算 V₁+V₂-V₃,取其中最大值。V₁-收集系统范围内发生事故的一个罐组或一套装置的物料量。注:储存相同物料的罐组按一个最大储罐计,装置物料量按存留最大物料量的一台反应器或中间储罐计; V₂-发生事故的储罐或装置的消防水量; V₃-发生事故时可以转输到其他储存或处理设施的物料量;

V₄-发生事故时仍必须进入该收集系统的生产废水量;

V₅-发生事故时可能进入该收集系统的降雨量; V₈=10qF, 其中 q-降雨强度, mm (按平均日降雨量); F-必须进入事故废水收集系统的雨水汇水面积, ha;

①收集系统范围内发生事故的一个罐组或一套装置的物料量核算(V_1)经筛选,本企业一套装置中存留最大物料量为 $25m^3$,发生事故时储罐设有围堰有效容积, $V_3=25.65m^3$ 。

②发生事故的装置消防水量核算(V2)火灾事故,根据建设单位提供资料,本

项目火灾持续时间 1.0 小时,消防供水以 25L/s 估算,则消防用水量为 90m3。

- ③本项目无生产废水,即 V_4 =0 m^3 。
- ④发生事故时可能进入该收集系统的降雨量核算(V_5), 本项目生产设施均位于厂房内,厂区建有实体围墙,厂房四周设置雨排水截流沟,雨水不会接触泄漏废油,不进入事故池内,即 $V_5=0$ m^3 。本项目事故状态下事故污水总产生量见下表。

表 56 本厂事故状态下事故污水产生量一览表

项目	事故罐物料	消防废水量	事故传输物	事故必须收	事故时雨水	
坝日	量 V ₁	V_2	料量 V3	集废水量 V4	量 V ₅	
污水量 m³	25	90	25.65	0	0	
合计	89.35					

综上,建设单位应在厂房南侧设置全厂事故池,容积不小于100m3。

(六) 应急预案

建设单位应建立相应的环境风险事故应急预案,事故应急预案内容应按《建设项目环境风险评价技术导则》(HJ/T169-2018)要求编制,具体内容如下:

表 57 本项目环境风险应急预案主要内容一览表

序号	项目	主要内容
1	应急计划区	主要危险源:生产设备、贮存系统、相关环保设施等;环境保护目标。
2	应急组织结构	公司设置应急组织机构,总经理为应急计划、协调第一人,应急人员必须为培训上岗熟练工;区域应急组织结构由当地政府、相关行业专家、卫生安全相关单位组成,并由当地政府进行统一调度。
3	预案分级 响应条件	根据事故的严重程度制定相应级别的应急预案,以及适合相应情况的处理措施。
4	报警通讯 联络方式	逐一细化应急状态下各主要负责部门的报警通讯方式、地点、电话号码以及相关配套的交通保障、管制、消防联络方法,涉及跨区域的还应与相关区域环境保护部门和上级环保部门保持联系,及时通报事故处理情况,以获得区域性支援。
5	应急环境监测	委托专业机构对事故进行环境监测。
3	抢险救援 控制措施	严格规定事故多发区、事故现场、邻近区域、控制防火区域设置控制和清除污染措施及相应设备的数量、使用方法、使用人员。
7	人员紧急撤 离疏散计划	事故现场、工厂邻近区、受事故影响的区域人员及公众对有毒有害物质应急剂量控制规定,制定紧急撤离组织计划和救护,医疗救护与公众健康。

8	事故应急救 援关闭程序	制定相关应急状态终止程序,事故现场、受影响范围内的善后处理、恢复措施,邻近区域解除事故警戒及善后恢复措施。
9	9 事故恢 复措施 制定有关的环境恢复措施(包括生态环境、地表水体),组织专 人员对事故后的环境变化进行监测,对事故应急措施的环境可行 进行后影响评价。	
11	应急培训计划	定期安排有关人员进行培训与演练。
12	公众教育和信息	对工厂邻近地区开展公众教育、培训和发布有关信息。

(七)结论

在落实环评要求及本项目设计的风险防控措施后,本项目可将风险隐患降至最低,达到可以接受的水平,因此项目从环境风险的角度是可行的。

表 58 建设项目环境风险简单分析内容表

建设项目名称	岫岩满族自治县安民废机油回收有限公司建设项目			项目	
建设地点	(辽宁) 省	(鞍山)市	(岫岩满 族自治 县)	(龙潭)镇	(小堡组) 村
地理坐标	经度	123.122623°	纬度	40.13	6989
主要危险物质及分 布	分 废机油				
环境影响及危害(大 气、地表水、地下水 等)	事故废水对水环境影响;废机油泄漏对水环境、土壤影响;火灾产生的次生污染物对大气环境的影响。			响;火灾产生	
风险防范措施要求	收集过程配备吸油毯、消防沙;储存过程,包括围堰、雨排力 事故池、导流沟、消防器材及突发环境应急预案。		雨排水截流沟、		
填表说明(列出项目 相关信息及评价说 明)	本项目危险物质 Q<1,则该项目环境风险潜势为 I,简单分析				

八、环保投资分析

根据项目设计及其可能对环境产生的污染,要求建设单位应采用的环保设施及 其投资情况见表 59。

表 59 项目环保投资一览表

类型	污染源	环保设施	数量	环保投 资(万 元)	备注
废气	装卸油	二级活性炭净化装置+15 米高排 气筒	1套	3	环评提 出
废水	生活污 水	防渗旱厕	/	0.5	环评提 出

	地下水及土壤	厂房整体(储罐区、卸油区、危 废间、导流沟、截流沟)、事故 池重点防渗;办公室、旱厕一般 防渗;厂区地面硬化。	600m ²	5	项目设 计
	地下水 监测井	厂区地下水下游设一处地下水监 测井	1座	0.5	
噪声	设备	风机油泵等设置减震基础。	4 个	0.4	环评提 出
固体废	生活垃 圾	带盖垃圾桶 1 个,定期由环卫部 门清运	1个	0.05	项目设 计
物	危险废 物	危废间	1 处	0.1	环评提 出
环境风 险	事故废水	设置三级防控第一级废机油贮存区设置 300mm围堰;第二级设置事故池,事故池容积为100m³规格(8m*5m*2.5m)。第三级装卸区设置导流沟,厂房周边设置雨排水截流沟及截流阀总阀采用电动阀,设于地下阀井处;导流沟、截流沟及事故池均进行重点防渗。	/	5	项目设 计
		环保投资合计		14.55	
	占总投资比例			18.2%	

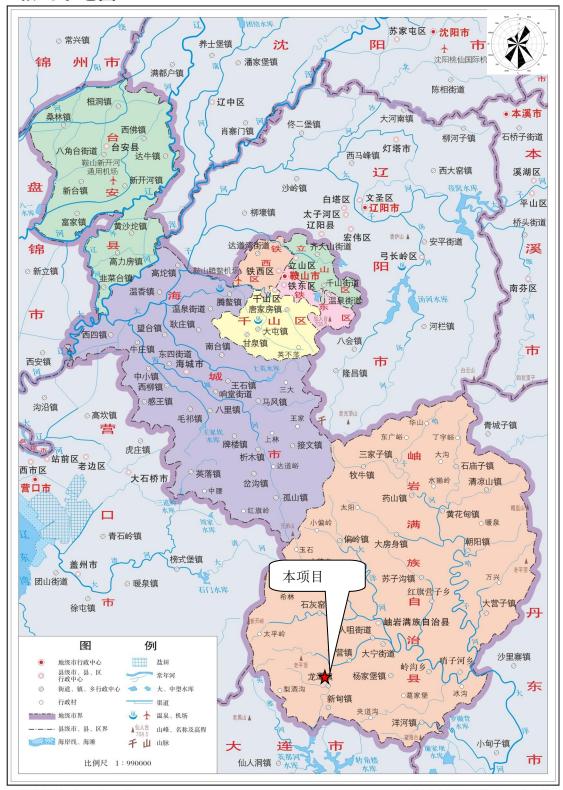
五、环境保护措施监督检查清单

内容要素	排放口(编号、 名称)/污染源	污染物项目	环境保护措施	执行标准
	DA001 活性炭 净化排放口	非甲烷总烃	二级活性炭净化 装置根 15m 高排 气筒	《大气污染物综合排放 标准》(GB16297-1996) 表 2 中有组织废气排放 浓度限值
大气环境	无组织	非甲烷总烃	密闭车间	《挥发性有机物无组织 排放控制标准》 (GB37822-2019)及《大 气污染物综合排放标 准》(GB16297-1996) 无组织废气排放浓度限 值
地表水环境	生活污水	COD、氨氮等	生活污水排入旱 厕定期清掏用于 农田施肥,少量洗 漱废水用于厂区 洒水抑尘,不外 排。	/
声环境	油泵、风机等设备运行	等效连续 A 声级	建筑隔声、设备减振	《工业企业厂界环境噪 声排放标准》 (GB12348-2008)中2 类标准
电磁辐射	/	/	/	/
固体废物	废活性炭和废油桶暂存于危废暂存间中,定期交由有资质单位处理;生活垃圾 收集后由环卫部门清运处置。固废贮存、处置满足《危险废物贮存污染控制标			
土壤及地下水污染防治措施	项目占地范围内的地面全部硬化处理,厂房整体(储油罐区、卸油区、事故池、导流沟)进行重点防渗,办公室及旱厕一般防渗处理。储存区设置围堰,卸油区设置导流沟,厂房四周设置截流沟,防止泄漏油品沿地表漫流。其重点防渗,防渗层为至少 1m 厚黏土层(渗透系数小于 1×10 ⁻⁷ cm/s)或 2mm 厚的其他人工材料,渗透系数小于 1×10 ⁻¹⁰ cm/s;其他区域采用防渗混凝土防渗,混凝土防渗等级不小于 S6。			
生态保护措施				

环境风险	设围堰、事故池等,制定应急预案管理制度。
防范措施	
其他环境	1、排污许可证申领
管理要求	根据《固定污染源排污许可分类管理名录》(2019 版),项目属于"77 生态保护和环境治理业"大类中的"7724 危险废物治理",本项目应实行重点管理。适用规范为《排污许可证申请与核发技术规范 总则》(HJ942-2018)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1133-2019)。本项目应在启动生产设施前进行排污许可证申领。 2、危废库监督检查管理要求(1)严格做好五防(防风、防雨、防晒、防流失、防渗漏);(2)由专人负责做好危险废物申报登记制度,严格执行危险废物转移联单制度;(3)制定并备案危险废物管理计划;(4)建立危险废物台账,台账至少保存 5a;(5)按规定设置标志标识。 3、排污口规范化要求(1)向环境排放污染物的排污口必须规范化。应便于采样与计量监测,便于日常现场监督检查。排污口位置需合理确定,依据环监(1996)470 号文件要求进行规范化管理。 (2)排放污染物采样点设置应按照《污染源监测技术规范》要求,设置在企业二级活性炭吸附装置排放口。(3)企业污染物排放口标志,应按照《环境保护图形标志排放口》(15562.1-1995)、《环境保护图形标志固体废物储存(处置)场》(15562.2 1995)及《危险废物识别标志设置技术规范》(HJ1276-2022)的规定,设置环保部统一制作的环境保护图形标志牌,污染物排放口的环保图形标志牌,应当设置在靠近采样点的醒目处,标志牌设置高度为其上缘距地面 2m。(4)要求使用国家环保局统一印刷的《中华人民共和国规范化排污口标志登记证》,并按要求填写有关内容;(5)根据排污口管理档案内容要求,项目建成后,应将主要污染物种类、数量、浓度、排放去向、达标情况及设施运行情况记录于档案。4、企业应履行自行监测计划。
	· · · · · · · · · · · · · · · · · · ·

六、结论

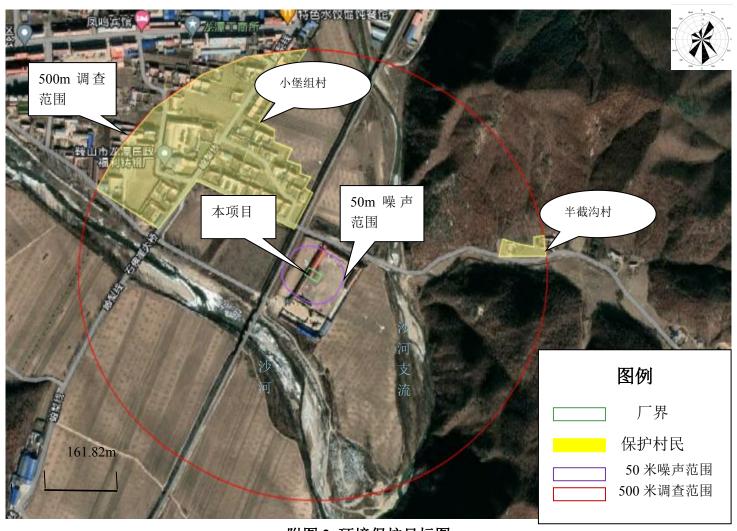
综上所述,本项目建设符	今国家	r	计及未 证
建议采取的污染防治措施后,算大。项目必须加强环境管理,资施,确保各污染物稳定达标排放	能够实现污染物的稳定	定达标排放,对区域 津、法规,切实落实	环境影响不污染防治措
项目建设可行。			

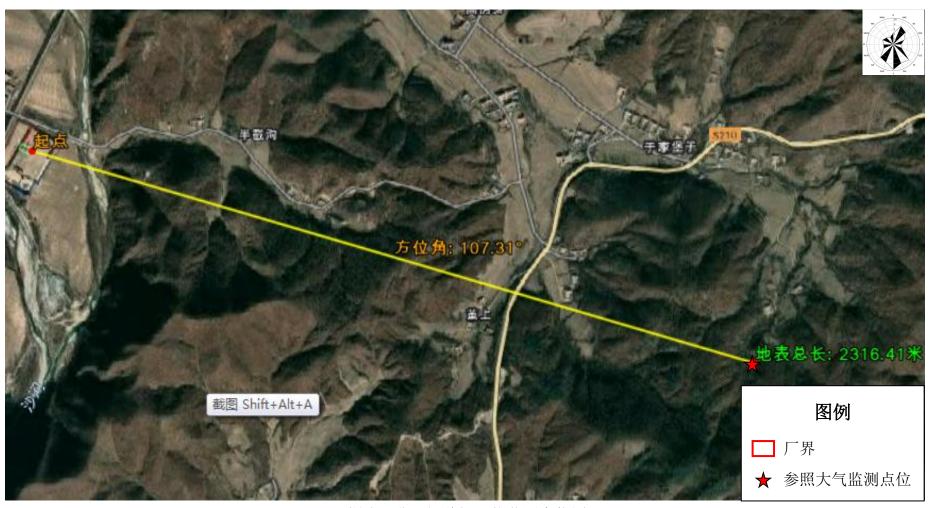

附表

建设项目污染物排放量汇总表

项目 分类	污染物名称	现有工程 排放量(固体废物 产生量)①	现有工程 许可排放量 ②	在建工程 排放量(固体废物 产生量)③	本项目 排放量(固体废物 产生量)④	以新带老削减量 (新建项目不填) ⑤	本项目建成后 全厂排放量(固体废物 产生量)⑥	变化量 ⑦
废气	挥发性有机物 (t/a)	/	/	/	0.00693	/	0.00693	+0.00693
	COD (t/a)	/	/	/	/	/	/	/
废水	BOD (t/a)	/	/	/	/	/	/	/
	SS (t/a)	/	/	/	/	/	/	/
一般工业 固体废物	生活垃圾(t/a)	/	/	/	0.76	/	0.76	+0.76
危险废物	废活性炭(t/a)	/	/	/	0.274	/	0.274	+0.274
[LPW]及初	废油桶(个/a)	/	/	/	2	/	2	+2

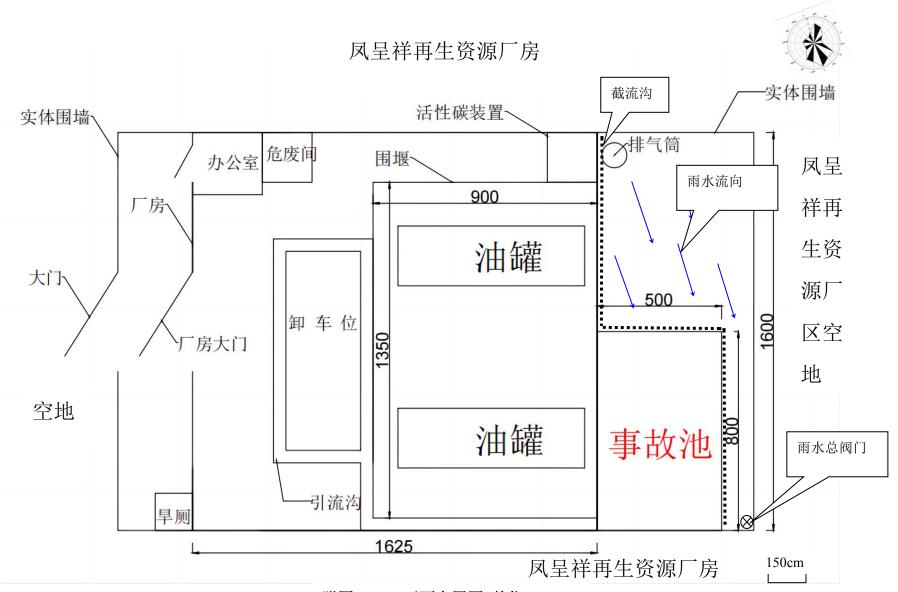
注: ⑥=①+③+④-⑤; ⑦=⑥-①


鞍山市地图

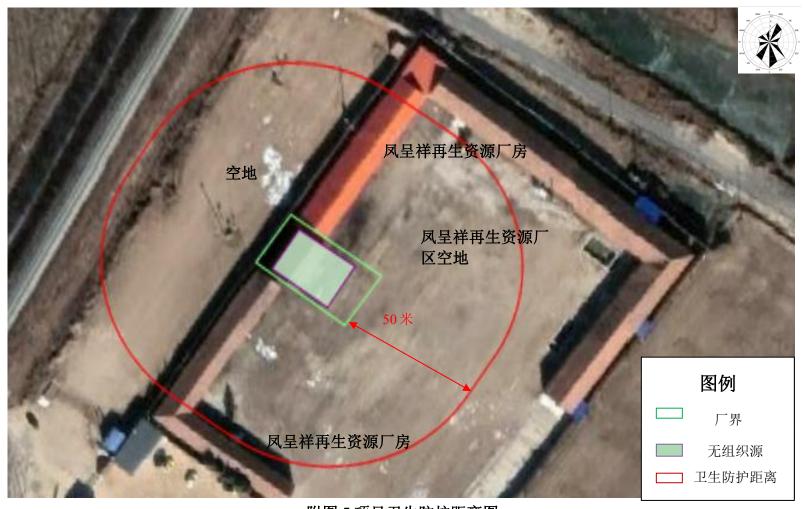

审图号:辽S[2019]212号

辽宁省自然资源厅编制 2019年10月

附图 1 地理位置图

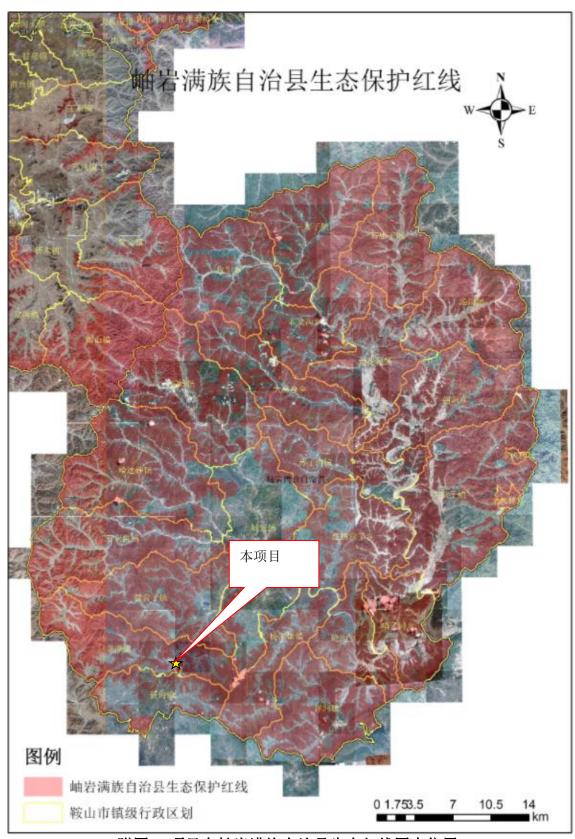

附图 2 环境保护目标图

附图 3 非甲烷总烃现状监测点位图

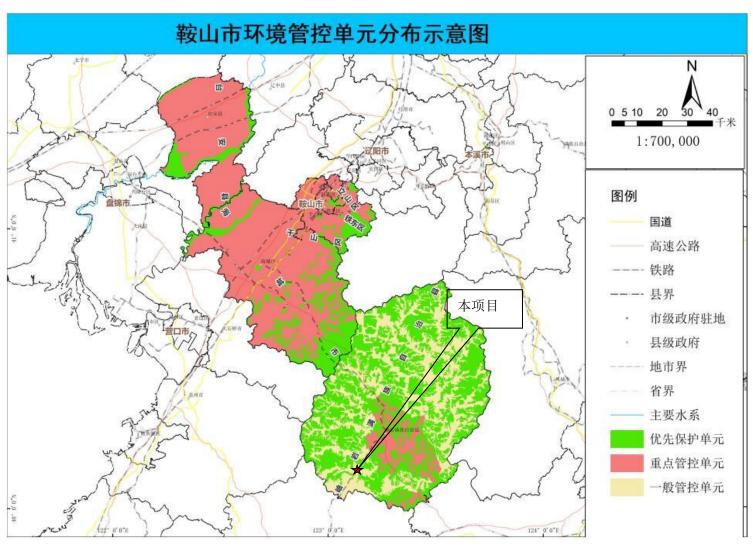

附图 4-1 厂区平面图

附图 4-2 平面布置图 单位: cm

附图 4-3 厂区防渗图



附图 5 项目卫生防护距离图



附图 6 项目地下水土壤监测点位图

附图 7 项目在岫岩满族自治县生态红线图中位置

附图 8 项目在鞍山市环境管控单元分布示意图中的位置

建设项目环境影响评价 工作委托书

辽宁瑞尔工程咨询有限公司:

我公司在山路满族在治县龙泽镇相菜村小堡组

拟建山皓满族龄县积成机油田收银公司年日收500吨废旧机油 项目。

根据《中华人民共和国环境保护法》、《中华人民共和国 环境影响评价法》、《建设项目环境保护管理条例》等环保法 律、法规的规定,本项目需编报环境影响报告表,特委托贵 公司承担本项目环境影响评价工作。

请接受委托尽快开展工作。

委托单位:

签发人: 高大香

签发日期:2023、2.1

关于《年回收500吨废旧机油项目》项目备案证明

岫发改备〔2022〕204号

项目代码: 2210-210323-04-05-344703

岫岩满族自治县安民废机油回收有限公司:

你单位《年回收500吨废旧机油项目》项目备案申请材料已收悉。根据《企业投 资项目核准和备案管理条例》及相关管理规定, 出具备案证明文件。具体项目信息如 下:

- 一、项目单位: 岫岩满族自治县安民废机油回收有限公司
- 二、项目名称:《年回收500吨废旧机油项目》
- 三、建设地点: 辽宁省鞍山市岫岩满族自治县龙潭镇相荣村小堡组
- 四、建设规模及内容:年回收500吨废机油。项目占地面积600平方米,建筑面积300 平方米。包括看护房和储油仓库,购置30吨储油罐2个、货车一台。项目预计年综合 能耗当量值2.33吨标准煤,等价值2.33吨标准煤。
- 五、项目总投资:80.00万元

经审查,项目符合国家产业政策,请抓紧履行项目开工前的各项 建设。若上述备案事项发生重大变化,请及时办理备案变更手续

附件 4 危废委托处置合同

	合同编号:	PJXD-ZL-2020-0023
女	危险废物委托 上置服务协议书	から 25-2 (で A R A で A R A A を A R A かけ 収金価値。 こうせみ で カ 音 変数が多数 (2 A R A
大二級、本方可以可以及其 第一次方面的可以及了外面 在他们可以及此或者的形成。 2. 可方分量主要与及所有 2. 和方分量主要与及所有		ACT ACT RESIDENCE.
(甲方): <u>岫</u>		回收有限公司
签订地点:_		

废矿物油委托处置协议书

甲方: 岫岩满族自治县安民废旧机油回收有限公司

乙方: 盘锦兴达沥青有限公司

根据《中华人民共和国固体废物污染环境防治法》、《国家危险废物名录》、《中华人民共和国环境保护法》等相关法律法规,废矿物油(废机油、废柴油、废变压器油、废齿轮油、废液压油)属危险废物(危废编号为 HW08),应由具有相应资质的单位进行收集处置。乙方要具有环保行政部门许可并具备废矿物油处置资格、处理能力的单位,现经双方友好协商,达成一致,协议如下:

第一条: 委托内容

甲方将生产经营过程中产生的废矿物油委托乙方依法合规处置,危险废物代码)。

第二条:甲方的权利和义务

- 1、甲方必须根据生产和经营过程中废矿物油的实际产生量如实填写《辽宁省固体废物, 危险废物市内转移申请书》,并按国家和地方环保部门的相关规定及时向相应环保部门备案。
 - 2、甲方负责本单位废矿物油的收集工作,暂存于专用容器内,做好标识。
- 3、甲方安排专人负责废矿物油的管理,并将收集容器贮存在符合环保要求的专门暂存地 点,确保危险废物不流失,不对环境造成污染。
- 4、甲方指定专人负责危险废物的交接,对废物数量等进行核实确认,在危险废物交接清单上签字确认。
- 5、废物的数量、种类或成份等特性发生变化时,甲方应及时通知乙方,并报当地环保部 门备案。
- 6、甲方有权对乙方违反有关危险废物转移管理规定的行为,向相应环保部门进行举报。 第三条:乙方的权利和义务
- 1、乙方将按国家和地方现行的法律、法规、规定及标准收集、贮存、利用、处置危险废物, 并确保废物不对环境造成二次污染,不直接流入市场或社会中。
- 2、乙方将安排专人随时或根据甲方要求及时提供废物清运服务。
- 3、乙方配合甲方办理《危险废物转移联单》(提供甲方办理手续所需要件)。

第四条: 收费标准及结算方式

甲方按照处置量支付乙方废矿物油处置费,支付标准按照<u>5000</u>元/吨收取。 第五条: 其它 HSE 条款

1、乙方在废矿物油拉运过程要有专门的押运人员,并做好防泄露工作。

- 2、乙方要配备相应的消防设施。
- 3、乙方在接收后发生的任何安全、环保事故事件与甲方无关,所有责任由乙方自行承担。
- 4、乙方的工作人员要经相关的培训,并取得危险品准驾证,押运证等证书。
- 5、乙方要有相关的管理规定。
- 6、乙方要有相关的应急措施。

第六条: 违约责任

- 1、因甲方原因不能履行本协议或违反协议给乙方造成直接经济损失时,甲方应全额赔偿 乙方的经济损失,并继续履行协议。
- 2、因乙方原因不能履行本协议或违反协议给甲方造成直接经济损失时,乙方应全额赔偿 甲方的经济损失,并继续履行协议。
- 3、甲乙双方中的任何一方对本协议的中止或暂停,应赔偿由此给协议对方带来的损失, 同时还应承担相应的法律责任。
- 4、如乙方发现甲方在协议期内将废矿物油(废机油)私自转交没有合法处置资质的企业和 个人处置,有权利向执法部门举报并同时终止协议。

第七条: 协议争议的解决方式

因本协议发生的争议,双方可友好协商解决,不能协商解决的可向乙方所在地人民法院 提起诉讼。

第八条: 协议期限

本协议有效期限自<u>2022</u>年<u>11</u>月<u>2</u>日至<u>2023</u>年<u>11</u>月<u>1</u>日止。 第九条:

本协议一式两份, 甲、乙双方各执一份, 具有同等法律效律。

甲方: 岫岩满族自治县安民废旧机油回收有限公司

地址:

联系方式:

甲方委托代表人 (签字): 高大春

联系方式: 15724373777 大名 青有限

1专用7

签订日期: 3623年11月 之间

乙方: 盘锦兴达沥青有限公司

地址: 盘锦市盘山县高升镇南关村

危险废物运输协议

甲方: 岫岩满族自治县安民废旧机油回收有限公司 乙方: 盘锦兴达沥青有限公司

经甲乙双方平等、友好协商, 现就盘锦兴达沥青有限公司有限公司

HW08 废矿物油的运输事宜达成如下协议:

- 乙方承担甲方所产生的 HW08 废矿物油的无害化运输。
- 价格及结算方式 运输单价按行业行规吨/公里计算,结算方式现金或转账支付。
- 交货地点 交货地点为甲方指定厂区。
- 环保条款
 - 1、乙方按照环保要求,具有对 HW08 废矿物油的运输环保资质。
 - 2、乙方对运输的 HW08 废矿物油应采取防止污染环境的措施。
 - 3、如在运输过程中发生洒落或其它污染环境的问题,如乙方负责。
- 双方的权利和义务
 - 1、乙方保证工作人员在甲方的交付厂区内作业时遵守甲方的厂规厂纪。
 - 2、运输过程中如果发生交通事故造成甲方货物经济损失由乙方负责赔偿。
- 争议的解决

本合同履行过程中如发生争议,双方先通过协商方式予以解决,协商不成, 在乙方所在地人民法院提起诉讼。

- - 1、本合同有效期从 <u>2022</u>年 11 月 2 日至 <u>2023</u>年 11 月 1 日止。
 - 2、本合同自双方加盖公章后生效。
 - 3、本合同一式两份,甲、乙双方各执一份。

甲 方: 岫岩满族自治县安民废旧机油回收有限公司

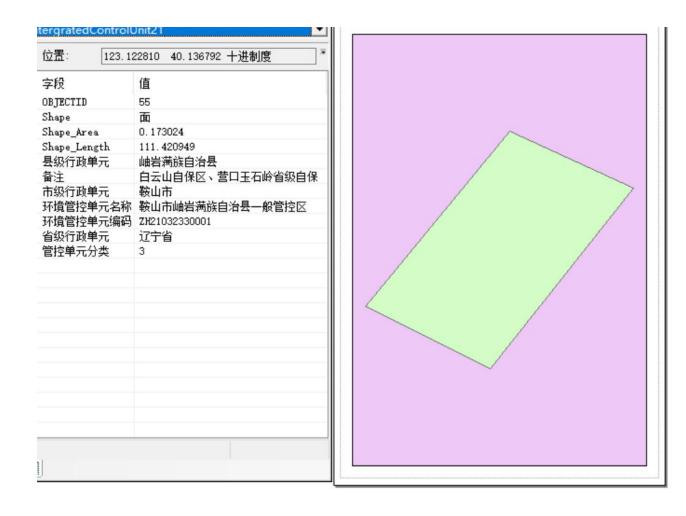
乙 方: 盘锦兴达沥青有限公司

甲方法定代表人或委托人: 高大春

乙方法定代表人或委托人;为,大小

附件5鞍山市"三线一单"查询结果

⊕ "三线一单"管控单元查询申请表


#	请查	一一·2~ 间单位(盖章)	岫岩满族自治县家	民废旧	机油回收有限公司
	Į		高大春	电话	18841285510
		申请日期	2022.11.08		
		项目名称	 年回收500吨废旧	机油项目	■
查询					0t. 项目占地面积为150
項目	四至	经纬度(2000国 家大地坐标系)	E N		
	范围	shp 格式文件	见附件		
	卝	<u>1</u> 务部门意见			

回执:<u>岫岩满族自治县安民废旧机油回收有限公司(单位)</u>的申请表收悉。 经查询,项目所在环境管控单元类别为:<u>一般管控区</u>(优先保护区、重点管控区或一般管控区):环境管控单元编码为:<u>ZH21032330001</u>。

> (查询部门盖章) 年 月 日

查询人: 孟昭祥 查询日期: 2022.11.09

(本申请表一式两份,一份回执,一份归档)

JC20312

检测报告正本

精诚(检)字(2020)第312号

项目名称:岫岩满族自治县环宇废旧机油回收有限公司

年回收 200 吨废旧机油建设项目

环境影响评价监测

委托单位:岫岩满族自治县环宇废旧机油回收有限公司

检测类别: 环评检测

检测内容: 环境空气、噪声

地址: 辽宁省鞍山市立山区中华北路 81 栋 1-3 层 S2 号

电话: 0412-5723422

传真: 0412-5723422

声明

- 1、本报告无公司检测章、骑缝章、计量认证标志无效。
- 2、检验报告内容需填写齐全、清楚;涂改、转抄、无 审核/签发者签字无效。
- 3、委托方对本报告如有疑问或异议,请于收到本报告 之日起七天内向本公司提出。
- 4、由委托单位自行采集送检的样品,本公司仅对该样 品的检测数据负责。
 - 5、未经本公司书面同意,不得部分复制本报告。
- 6、未经本公司书面批准,本报告数据不得用于商业广告、不得作为诉讼的证据材料。

地址:辽宁省鞍山市立山区中华北路 81 栋 1-3 层 S2 号

1 项目信息

1 坝日16总	
委托单位	岫岩满族自治县环宇废旧机油回收有限公司
委托单位地址	岫岩满族自治县龙潭镇蜜蜂村茧上组
检测类别	环评检测
采样地点	项目北侧和南侧居民区、厂界四周
委托时间	2020年9月22日
检测内容说明	(一) 环境空气检测 (1) 检测点位 在项目北侧居民区处(GI)设1个检测点位,共1个检测点位。 (2)检测项目 非甲烷总烃。 (3)检测频率 连续检测7天,每天检测4次。 (4)上报数据要求 上报检测结果数据的同时写明检测因子名称、检测仪器型号、采样方法、时间、分析方法名称、标准号、方法最低检出限等。 (二) 环境噪声检测 (1)检测点位 在项目厂界四周界外 Im 处(即东、南、西、北/N1、N2、N3、N4)及 周边居民处(南侧 N5、北侧 N6)各设置1个检测点位,共6个检测点位。 (2)检测项目 等效连续A声级 Leq。 (3)检测频率 连续检测2天,每天昼间、夜间各检测1次。 (4)上报数据要求 等效连续A声级 Leq值,同时写明检测因子名称、分析方法名称、标准
备 注	号、方法最低检出限等。

2 采样及分析方法

① 采样方法

	0 /1011/		
	类别	检测项目	采样方法及来源
	环境 空气	非甲烷总烃	《环境空气质量手工监测技术规范》HJ194-2017及修改单
CARL	噪声	环境噪声	《声环境质量标准》 GB3096-2008

② 分析方法及设备

检测 类别	检测项目	分析方法	使用仪器	最低 检出限	
环境 空气			气相色谱仪 FID 检测器 GC-4000A	0.07 mg/m ³	
噪声	环境噪声	《声环境质量标准》GB3096-2008	多功能声级计 AWA6228+ 声校准器 AWA6221A		

3 质量保证与控制措施

- (1)参与本次检测的人员均持有相关上岗资格证书并通过考核;
- (2)本次检测活动所涉及的方法标准、技术规范均为现行有效,并通过辽宁省市场监督管理局实验室资质认定(计量认证);
- (3) 检测所用的仪器均处于计量检定/校准有效期内,采样仪器进入现场采样前和采样后均进行了校核:
 - (4) 检测用的标准物质和标准样品均处于有效期内;
- (5) 样品的采集、运输、保存、实验室分析和数据计算的全过程均按相关技术规范的要求进行,保证数据的有效性和准确性;
 - (6) 采样及现场检测期间,气象条件满足相关技术规范的要求;
 - (7) 实验室实施平行样、控制样的质量管理措施;
 - (8) 检测数据、检测报告严格实行三级审核制度。

(本页以下空白)

4 检测结果

4.1-1 环境空气检测结果

项目名称	司年	岫岩满族自治县环宇废旧机油回收有限公司年回收 200 吨废旧机油建设项目环境影响评价监测			检测目的		环评检测	
采样时间	2020年9月24日-10月1日					分析时间	THE STATE OF THE S	年9月25日- 10月1日
样品来源	O W	现场采样				项目数量		1项
		De C	检	测	结	果	强烈战	
The Co			C CA	数据			And a	The top
点位	项目	08:00	14:00	20:00	次日 02:00	单位	采样时间	
		0.78	0.81	0.74	0.70	mg/m ³	2020年9月24日	
		C B	0.63	0.77	0.61	0.55	mg/m ³	2020年9月25日
项目北侧居	民		0.64	0.58	0.55	0.54	mg/m ³	2020年9月26日
区处 G1		非甲烷	0.53	0.54	0.46	0.42	mg/m³	2020年9月27日
E 123°08'47.87" N 40°07'40.98"			0.57	0.61	0.54	0.50	mg/m³	2020年9月28日
			0.63	0.71	0.59	0.53	mg/m ³	2020年9月29日
		Se Ver	0.51	0.50	0.46	0.42	mg/m ³	2020年9月30日

注:检测点位见附图。

(本页以下空白)

4.1-2 检测期间气象参数

项目名称	岫岩满族自治 公司年回收 2 境影响评价监	检测目的	环评检测			
采样时间	羊时间 2020年9月24-30日		24-30 日	分析时间		
样品来源 现场采样		¥	项目数量	6 项		
		检	测 结	果		
14 X4 W	C _C		数	据		
采样点位	项	目	结果	单位	平 采样时间	
The second	天气	状况	多云			
		度	15.8	°C		
	大	度	52	%RH		
	R	,向	东南	Car The	2020年9月24	
	凤	速	3.1	m/s		
	大生	气压	100.72	kPa		
	天气	状况	晴	The same of the sa		
	温	度	16.2	°C		
	湿	度	65	%RH	2020/50 825	
		向	西北		— 2020年9月25	
项目所在	也风	速	3.3	m/s		
	大气	〔压	100.69	kPa		
	天气	状况	晴	C		
	温	度	17.8	C		
	湿	度	67	%RH	2020年9月26日	
	风	向	西北		2020年9月26日	
	风	速	3.0	m/s		
	大气	压	100.53	kPa		
	天气	状况	晴	The state of the s		
	温	度	16.9	C	2020年9月27日	
	湿	度	62	%RH		

C20312			A THE PARTY OF		第 5 页 共 8 页	
项目名称	公司	满族自治县环宇废 年回收 200 吨废旧 响评价监测	Control of the second of the s	检测目的	环评检测	
采样时间	10 TO	2020年9月24-30日		分析时间	And the second	
样品来源		现场采村	¥ Marie Carlotte	项目数量	6项	
	Suc to	检	测 结	果		
四块上		- T	数	据		
采样点位	V	项目	结果	单位	采样时间	
	The state of	风向	南	500 · 电电路	国 A 1	
		风速	3.7	m/s	C. C	
	NO.CH	大气压	100.67	kPa		
		天气状况	多云		THE STATE OF	
	N.S.	温度	17.5	°C		
		湿度	68	%RH	2020年9月28	
		风向	南	ALLE OF		
		风速	3.4	m/s		
		大气压	100.54	kPa		
项目所在出	lih .	天气状况	多云			
次日//111	LES.	温度	12.1	C	THE REAL PROPERTY.	
	T YOU	湿度	69	%RH	according Flags	
		风向	北北	Bar Control	2020年9月29日	
		风速	4.4	m/s		
		大气压	100.83	kPa		
		天气状况	晴			
		温度	13.8	C		
		湿度	59	%RH	2020年9月30日	
		风向	北		2020年9月30日	
		风速	4.8	m/s	The state of	
		大气压	100.80	kPa		

(本页以下空白)

JC23069

检测报告正本

精诚(检)字(2023)第069号

项目名称:岫岩满族自治县安民废旧机油回收有限公司年回

收 500 吨废机油建设项目环评监测

委托单位: 岫岩满族自治县安民废旧机油回收有限公司

检测内容: 地下水、土壤

辽宁精诚检测技术有限公司 二〇二三年二月十五日

地址: 辽宁省鞍山市立山区中华北路 81 栋 1-3 层 S2 号

声明

- 1、本报告无公司检验检测专用章、骑缝章、资质认定 标志无效。
- 2、检验报告内容需填写齐全、清楚;涂改、转抄、无 审核/签发者签字无效。
- 3、委托方对本报告如有疑问或异议,请于收到本报告 之日起七天内向本公司提出。
- 4、由委托单位自行采集送检的样品,本公司仅对该样 品的检测结果负责。
 - 5、本报告部分复印无效。
- 6、未经本公司书面批准,本报告数据不得用于商业广告、不得作为诉讼的证据材料。

地址: 辽宁省鞍山市立山区中华北路 81 栋 1-3 层 S2 号

声明

- 1、本报告无公司检验检测专用章、骑缝章、资质认定标志无效。
- 2、检验报告内容需填写齐全、清楚;涂改、转抄、无 审核/签发者签字无效。
- 3、委托方对本报告如有疑问或异议,请于收到本报告 之日起七天内向本公司提出。
- 4、由委托单位自行采集送检的样品,本公司仅对该样品的检测结果负责。
 - 5、本报告部分复印无效。
- 6、未经本公司书面批准,本报告数据不得用于商业广告、不得作为诉讼的证据材料。

地址: 辽宁省鞍山市立山区中华北路 81 栋 1-3 层 S2 号

JC23069		arof	第 2 页 共 16 页
	JC23069U010101-13	六价铬	样品密封完好、透明、
	JC230090010101-13	八川市	无色、无异味、无油膜
	JC23069U010101-14	K ⁺ 、Na ⁺ 、Ca ²⁺ 、Mg ²⁺	样品密封完好、透明、

 无色、无异味、无油膜

 碳酸根离子(CO3²-)、 重碳酸根离子(HCO3°)、 氯化物(Cl·)、硫酸盐(SO4²-)

 无色、无异味、无油膜

共27项。

(3) 检测频率

连续检测2天,每天检测1次。

(二) 土壤检测

(1) 检测点位

采样点位	采样深度	点位编号	备注
厂界内	0~0.2m	Ti	表层样

(2) 样品说明

样品编号	检测项目	样品状态
JC23069T010101-01	总砷、镉、六价铬、铜、铅、总 汞、镍	样品密封完好无破 损、砂土、黄棕色、 潮、无植被
JC23069T010101-02	四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯	样品密封完好无破 损、砂土、黄棕色、 潮、无植被
JC23069T010101-03	硝基苯、2-氯苯酚、苯并[a]蒽、 苯并[a]芘、苯并[b]荧蒽、苯并[k] 荧蒽、菌、二苯并[a,h]蒽、茚并 [1,2,3-cd]芘、萘、苯胺	样品密封完好无破 损、砂土、黄棕色、 潮、无植被
JC23069T010101-04	石油烃(C ₁₀ ~C ₄₀)	样品密封完好无破 损、砂土、黄棕色、 潮、无植被

JC23069		第 3 页 共 16 页	
COC TON	共 46 项。	AT 3 K X 10 K	
	(3)检测频率		
ALOL DIOL DIOL DIOL	每个样品检测 1 次。		
	每个件品位测 1 次。		
orational areas	Toron aron and the state of the		
备注	Constitution of the second of		
nc nene	or o		
(本页以下空	[白]		
September 1010			
	THE STATE OF THE S		
The French Control of the Control of			

2分析方法

检测 类别	检测项目	分析方法	使用仪器	最低 检出限
pH值	pH值	水质 pH 值的测定 电极法 HJ 1147-2020	便携式 pH 计 pHBJ-260F	
	氨氮	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 9.1 纳氏试剂分光光度法	可见分光光度计 V-1000	0.02 mg/L
	6957878787878 ACO	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 5.2 紫外分光光度法	紫外可见分光光度计 UV-5500	0.2 mg/L
		生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 10.1 重氮偶合分光光度法	紫外可见分光光度计 UV-5500	0.001 mg/L
	挥发酚类	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006 9.1 4-氨基安替吡啉三氯甲烷萃取分 光光度法	紫外可见分光光度计 UV-1000	0.002 mg/L
	氰化物	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 4.1 异烟酸-吡唑酮分光光度法	可见分光光度计 V-1000	0.002 mg/L
	溶解性总固体	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006 8.1 称量法	电子天平 FA2204N	
	耗氧量	生活饮用水标准检验方法 有机物综合指标 GB/T 5750.7-2006 1.1 酸性高锰酸钾滴定法	棕色酸式滴定管 25mL	0.05 mg/L
	石油类	水质 石油类的测定 紫外分光光度法(试行) HJ 970-2018	紫外可见分光光度计 UV-1000	0.01 mg/L

JC23069 检测 类别	检测项目	分析方法	第 5 页 共 16 页 使用仪器	最低检出网	
	总大肠菌群	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006 2.2 滤膜法	电热恒温培养箱 LI-500 型 立式压力蒸汽灭菌器 YXQ-LS-50SII	orai s	
prof : prof	氟化物	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 3.1 离子选择电极法	离子计 PXSJ-226	0.2 mg/L	
o rere	总硬度	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006 7.1 乙二胺四乙酸二钠滴定法	酸式滴定管 50mL	orat	
Crock res	表 表	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 8.1 原子荧光法	原子荧光光度计 AF 7500B	0.1 μg/L	
地下水一	神 10101	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 6.1 氢化物原子荧光法	原子荧光光度计 AF 7500B	1.0 μg/L	
地下小	镉	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 9.1 无火焰原子吸收分光光度法	原子吸收光谱仪 PinAAcle D900	0.5 μg/L	
	th	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 11.1 无火焰原子吸收分光光度法	原子吸收光谱仪 PinAAcle D900	2.5 μg/L	
	铁	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 2.1 原子吸收分光光度法	原子吸收分光光度计 AA-7001	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
	锰	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 3.1 原子吸收分光光度法	原子吸收分光光度计 AA-7001	2	
rone s	六价铬	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 10.1 二苯碳酰二肼分光光度法	紫外可见分光光度计 UV-1000	0.004 mg/L	

JC23069 检测	检测项目	分析方法	第 6 页 共 16 使用仪器	最低
类别	K ⁺	水质 可溶性阳离子(Li ⁺ 、Na ⁺ 、NH ₄ ⁺ 、 K ⁺ 、Ca ²⁺ 、Mg ²⁺)的测定 离子色谱法	离子色谱仪 ICS-600	检出序 0.02 mg/L
	Ca ²⁺	HJ 812-2016 水质 可溶性阳离子(Li ⁺ 、Na ⁺ 、NH ₄ ⁺ 、 K ⁺ 、Ca ²⁺ 、Mg ²⁺)的测定 离子色谱法 HJ 812-2016	离子色谱仪 ICS-600	0.03 mg/L
	Na ⁺	水质 可溶性阳离子(Li*、Na*、NH4*、 K*、Ca ²⁺ 、Mg ²⁺)的测定 离子色谱法 HJ 812-2016	离子色谱仪 ICS-600	0.02 mg/L
ora oron	Mg ²⁺	水质 可溶性阳离子(Li ⁺ 、Na ⁺ 、NH ₄ ⁺ 、 K ⁺ 、Ca ²⁺ 、Mg ²⁺)的测定 离子色谱法 HJ 812-2016	离子色谱仪 ICS-600	0.02 mg/L
地下水	碳酸根离子 (CO ₃ ²⁻)	地下水质分析方法 第 49 部分: 碳酸根、重碳酸根和氢氧根离子的测定 滴定法 DZ/T 0064.49-2021	酸式滴定管. 25mL	1.25 mg/L
36 66 3121 31 36 66	重碳酸根离子 (HCO3·)	地下水质分析方法 第 49 部分: 碳酸根、重碳酸根和氢氧根离子的测定 滴定法 DZ/T 0064.49-2021	酸式滴定管. 25mL	1.25 mg/L
rance and	氯化物(Cl·)	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 1.2 离子色谱法	离子色谱仪 ICS-600	n oron s
	硫酸盐 (SO ₄ ²⁻)	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006 2.2 离子色谱法	离子色谱仪 ICS-600	
土壤	总砷	土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分: 土壤中总砷的测定 GB/T 22105.2-2008	原子荧光光度计 AF-7500B	0.01 mg/kg
acar.	镉	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收光谱仪 PinAAcle D900	0.01 mg/kg

JC2306 检测 类别		检测项目	分析方法	第7页共16页使用仪器	最低检出限	
	六价铬 铜 铅		土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019	原子吸收分光光度计 AA-7001	0.5 mg/kg	
			土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-7001	l mg/kg	
Tere w			土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-7001	10 mg/kg	
		总汞	土壤质量 总汞、总砷、总铅的测定原子荧光法 第1部分: 土壤中总汞的测定 GB/T 22105.1-2008	原子荧光光度计 AF-7500B	0.002 mg/kg	
	镍		土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-7001	3 mg/kg	
	ord G	氯甲烷	State of the state	September 1919	1.0 μg/kg	
		四氯化碳		orof	1.3	
	70	EJ XC FU 19X	A STATE OF THE STA		μg/kg	
		氯仿	rary aran and other than the last	aral a prof or or	1.1	
土壤	XXX	88	TOTO TOTO	Telesia de la composição de la composiçã		μg/kg
	CJC :	1,1- 二氯乙烷	A STANDARD TO THE STANDARD STA	TOTAL	1.2	
	挥	1,2-	n sacra arat	Selection of prof	μg/kg 1.3	
	发	二氯乙烷	orac in response to the second of the second		μg/kg	
	性	1,1-	土壤和沉积物 挥发性有机物的测定	气相色谱质谱	1.0	
	有	二氯乙烯	吹扫捕集/气相色谱-质谱法	ISQ 7000	μg/kg	
	机	顺-1,2-	НЈ605-2011		1.3	
	物	二氯乙烯	CONTRACTOR OF THE PROPERTY OF	Tere near	μg/kg	
		反-1,2-	OF THE STATE OF TH	arar arar	1.4	
	100	二氯乙烯	ator of or other		μg/kg	
		二氯甲烷	The state of the s	TO TOTAL STORES	1.5	
		9599		OF OF THE PARTY OF	μg/kg	
	1010	1,2-	The state of the s		1.1	
		二氯丙烷	STORY OF THE STORY	acat a acat a acat	μg/kg	
		1,1,1,2- 四氯乙烷	107.00 P. 107.00	ror s or s	1.2	
	Tro.	四承乙沉	COC - OCO		μg/kg	

JC23069 检测 类别	检测项目		分析方法	第8页共16页使用仪器	最低 检出限	
	9040	1,1,2,2-	A STANCE OF THE		1.2	
	100	四氯乙烷	aron aron and the	COLOR DIOL	μg/kg	
		四年才終		ror sold of the so	1.4	
	neno.	四氯乙烯	State of the state		μg/kg	
		1,1,1-	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	Tene Tene	1.3	
		三氯乙烷	TO THE STATE OF TH	0.00	μg/kg	
	NC OF	1,1,2-			1.2	
		三氯乙烷	Total Train	1010 1010 1010 1010 1010 1010 1010 101	μg/kg	
		三氯乙烯			1.2	
	oror.	一系乙州		arol of the second	μg/kg	
		1,2,3	SSECOND OF STORY	September 2001	1.2	
		-三氯丙烷		or of the second	μg/kg	
	70 s	氯乙烯	A CONTRACTOR OF THE CONTRACTOR		1.0	
	挥	SKI CO MID	STATE OF STA	气相色谱质谱 ISQ 7000	μg/kg	
	发	苯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法		1.9	
	性	Province Control			μg/kg	
	有	氯苯	HJ605-2011		1.2	
	机	Tene activities	ordinator ordina	rot	μg/kg	
	物	1,2-			1.5	
土壤	933	二氯苯		September 1919	μg/kg	
		1,4-			1.5	
	2 rc	二氯苯			μg/kg	
		乙苯		Service of the servic	1.2	
		A STATE OF THE STA	TO TO THE THE PARTY OF THE PART		μg/kg 1.1	
	icac	苯乙烯	A CONTRACTOR OF THE CONTRACTOR	Service area of the service of the s	DI S	
		GATE ELECTRICATION OF THE PARTY	ASSESSION OF THE STATE OF THE S		μg/kg 1.3	
		甲苯	porce and the second	20,31	60 K 20 K 20 S	
	Of the O		A RANGE TO TO THE STATE OF THE		μg/kg 1.2	
		间,二甲苯	STORY OF THE STORY OF THE STORY	State of the other	μg/kg	
		TOTAL TOTAL	action of the second of the se		1.2	
	oroli	邻二甲苯	A STANDARD OF THE STANDARD OF	TC to	μg/kg	
				SOURCE OF THE SECOND	0.09	
	半	硝基苯	CONTRACTOR OF THE STATE OF THE		mg/kg	
	挥	2-氯苯酚			0.06	
	发	(2-氯酚)	土壤和沉积物 半挥发性有机物的测	气相色谱质谱联用仪	mg/kg	
	性	JOSE DE LA COLONIA	定 气相色谱-质谱法	GCMS-QP2020NX	0.1	
	有	苯并[a]蒽	НЈ 834-2017		mg/kg	
	机		OLOL DLOL S OLOL	September 1000	0.1	
	物	苯并[a]芘	TO THE STATE OF TH		mg/kg	

检测 类别		检测项目	分析方法	使用仪器	最低 检出限
orar or		苯并 [b]荧蒽	and Corol Society	Tora Lare Cora	0.2 mg/kg
土壤	半	苯并 [k]荧蒽	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017		0.1 mg/kg
	挥	植		oror oror oror	0.1 mg/kg
	发性左	二苯并 [a,h]蒽		气相色谱质谱联用仪 GCMS-QP2020NX	0.1 mg/kg
	有机物	茚并 [1,2,3-cd]芘			0.1 mg/kg
	物	萘	orar i arar i orar		0.09 mg/kg
	10 cm	苯胺	土壤 苯胺的测定 气相色谱-质谱法 LNJCJC-ZDS-38-2020	Apply to the state of the state	0.1 mg/kg
	石油烃(C10~C40)		土壤和沉积物 石油烃(C ₁₀ ~C ₄₀)的测定 气相色谱法 HJ 1021-2019	气相色谱仪 GC-2014C	6 mg/kg

(本页以下空白)

3 质量保证与控制措施

- (1)参与本次检测的人员均持有相关上岗资格证书并通过考核;
- (2) 本次检测活动所涉及的方法标准、技术规范均为现行有效,并通过辽宁省市场监督管理局实验室资质认定;
 - (3) 检测所用的仪器均处于计量检定/校准有效期内;
 - (4) 检测用的标准物质和标准样品均处于有效期内;
- (5) 样品的保存、实验室分析和数据计算的全过程均按相关技术规范的要求进行,保证数据的有效性和准确性;
 - (6) 实验室实施平行样、控制样的质量管理措施;
 - (7) 检测数据、检测报告严格实行三级审核制度。

(本页以下空白)

4 检测结果

4.1 地下水检测结果

项目名称	岫岩满族自治县安民废旧机 公司年回收 500 吨废机油建设 测		检测目的	环评检测
采样时间	2023年2月6-7日		分析时间	2023年2月6-13日
样品来源	现场采样		项目数量	27 项
000	检测	结	果	
样品名称	项目	数 据	单位	采样时间
ora ora		6.9	无量纲	2023年2月6日
	pH值	6.8	无量纲	2023年2月7日
	安氮 ————————————————————————————————————	0.141	mg/L	2023年2月6日
	安(炎)	0.153	mg/L	2023年2月7日
	硝酸盐氮(硝酸盐)	6.91	mg/L	2023年2月6日
	侗政血炎 (侗政血)	6.17	mg/L	2023年2月7日
	亚硝酸盐氮(亚硝酸盐)	0.002	mg/L	2023年2月6日
Les en muse Lug		0.003	mg/L	2023年2月7日
本项目附近小堡 子村居民水井U	150 SET	<0.002	mg/L	2023年2月6日
E 123°07′34.65″ N 40°08′25.24″		<0.002	mg/L	2023年2月7日
orar ara	氰化物 —	<0.002	mg/L	2023年2月6日
	用V IC 10	<0.002	mg/L	2023年2月7日
	溶解性总固体 —	285	mg/L	2023年2月6日
	付册 工态 凹冲	298	mg/L	2023年2月7日
	耗氧量 —	1.04	mg/L	2023年2月6日
	木七平 (里	1.12	mg/L	2023年2月7日
	石油类	0.02	mg/L	2023年2月6日
	口他关	0.01	mg/L	2023年2月7日

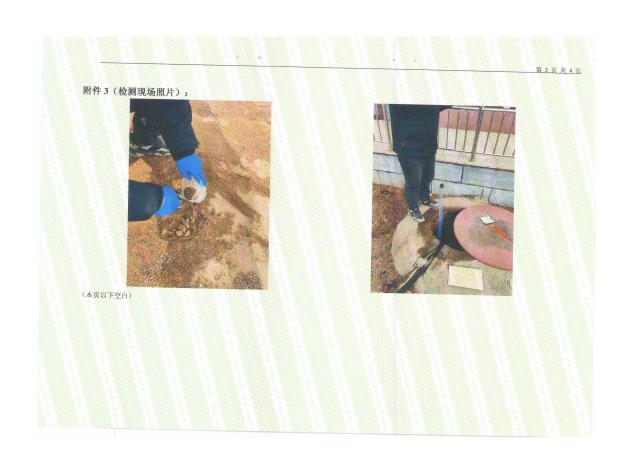
JC23069	SANDER STANDERS	Para Para Para Para Para Para Para Para	0,000 (49,000)	第 12 页 共 16 页
项目名称	岫岩满族自治县安民废旧公司年回收 500 吨废机油 测		检测目的	环评检测
采样时间	2023年2月6-	-7 日	分析时间	2023年2月6-13日
样品来源	现场采样	CIO - iCIO - ICIO	项目数量	27 项
	检验	测 结	果	or is or or
样品名称	项目	数 据	单位	采样时间
	为	未检出	CFU/100	mL 2023年2月6日
	总大肠菌群	未检出	CFU/100i	mL 2023年2月7日
	oron promise oron	0.422	mg/L	2023年2月6日
	氟化物	0.440	mg/L	2023年2月7日
	总硬度	77.0	mg/L	2023年2月6日
		80.7	mg/L	2023年2月7日
	汞	<0.1	μg/L	2023年2月6日
		<0.1	μg/L	2023年2月7日
		<1.0	μg/L	2023年2月6日
本项目附近小堡 子村居民水井U		<1.0	μg/L	2023年2月7日
E 123°07'34.65" N 40°08'25.24"	r31 3	<0.5	μg/L	2023年2月6日
10 00 23.24	镉	<0.5	μg/L	2023年2月7日
	En.	<2.5	μg/L	2023年2月6日
	铅	<2.5	μg/L	2023年2月7日
	Pd.	< 0.075	mg/L	2023年2月6日
arar arar	铁	<0.075	mg/L	2023年2月7日
	P.Z.	<0.025	mg/L	2023年2月6日
	锰	<0.025	mg/L	2023年2月7日
	2.16.6h OFO	< 0.004	mg/L	2023年2月6日
	六价铬	<0.004	mg/L	2023年2月7日

JC23069	000000000000000000000000000000000000000	or oron		第 13 页 共 16 页
项目名称	岫岩满族自治县安民废旧机; 公司年回收 500 吨废机油建设 测	检测目的	环评检测	
采样时间	2023年2月6-7日		分析时间	2023年2月6-13日
样品来源	现场采样	cre a real	项目数量	27 项
	检测	结	果	21 1 21 21 21 21 21 21 21 21 21 21 21 21
样品名称	项目	数据	单位	采样时间
	K+	2.20	mg/L	2023年2月6日
	Tone water the state of the sta	2.60	mg/L	2023年2月7日
	Ca ²⁺	174	mg/L	2023年2月6日
	Ca ²	173	mg/L	2023年2月7日
	TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT	63.1	mg/L	2023年2月6日
	Na ⁺	65.6	mg/L	2023年2月7日
	Service Control of the Control of th	23.4	mg/L	2023年2月6日
本项目附近小堡 子村居民水井 U		24.8	mg/L	2023年2月7日
E 123°07′34.65″ N 40°08′25.24″		<1.25	mg/L	2023年2月6日
11 40 00 23.24	碳酸根离子(CO3 ²⁻)	<1.25	mg/L	2023年2月7日
		61.5	mg/L	2023年2月6日
	重碳酸根离子(HCO3-)	50.4	mg/L	2023年2月7日
	E Dotton (CV)	77.1	mg/L	2023年2月6日
	氯化物 (Cl·)	77.7	mg/L	2023年2月7日
	PT #41 (00 2-)	55.1	mg/L	2023年2月6日
	硫酸盐 (SO ₄ ²⁻)	68.3	mg/L	2023年2月7日

注1:检测点位见附件2。(本页以下空白)

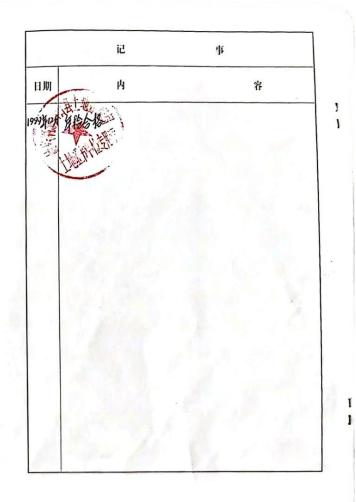
4.2 土壤检测结果

项目名称	1 KONKO	满族自治县安民废旧机 年回收500吨废机油建设		检测目的	环评检测	
送样时间	2023 年 2 月 6 F 现场采样		ic is force a for	分析时间	2023年2月8-10日	
样品来源				项目数量	46 项	
Tere Ter	aror alaka	检测	结	果	e l'acre	
采样点位	L	项目	数 据	单位	采样时间	
TOTO PROTO	3 OF	总砷	7.82	mg/kg	oral in a	
		镉	0.141	mg/kg	or or or	
		六价铬	<0.5	mg/kg	State of the state	
		铜	14	mg/kg	orn a ora	
		铅	35	mg/kg	TOTO TOTO	
		总汞	0.022	mg/kg		
		镍	22	mg/kg	2023年2月6日	
	JUN TON	四氯化碳	<1.3	μg/kg		
		氯仿	<1.1	μg/kg		
厂界内 T	24.15 DV	氯甲烷	<1.0	μg/kg		
E 123°07'42.8 N 40°08'16.0	100000	1,1-二氯乙烷	<1.2	μg/kg		
	oror a	1,2-二氯乙烷	<1.3	μg/kg		
		1,1-二氯乙烯	<1.0	μg/kg	oror oror	
	CAIC A	顺-1,2-二氯乙烯	<1.3	μg/kg		
		反-1,2-二氯乙烯	<1.4	μg/kg	La Deble Deble de la Contraction de la Contracti	
		二氯甲烷	<1.5	μg/kg		
		1,2-二氯丙烷	<1.1	μg/kg		
	oron	1,1,1,2-四氯乙烷	<1.2	μg/kg	arar arar	
		1,1,2,2-四氯乙烷	<1.2	μg/kg	Store of the	
	CO TO	四氯乙烯	<1.4	μg/kg		


IC23069	TO CONTRACT TO THE STATE OF THE	good a profit	of Allen	第 15 页 共 16 页	
项目名称	岫岩满族自治县安民废旧公司年回收500吨废机油3测		检测目的	环评检测	
送样时间	2023年2月6	5日	分析时间	2023年2月8-10日	
样品来源	现场采样	"IC = 1C10	项目数量	46 项	
	检验检验	测结	果	Toroc Toroc Toroc	
采样点位	项目	数据	单位	采样时间	
	1,1,1-三氯乙烷	<1.3	μg/kg		
	1,1,2-三氯乙烷	<1.2	μg/kg		
	三氯乙烯	<1.2	μg/kg	or orac orac	
	1,2,3-三氯丙烷	<1.2	μg/kg		
	氯乙烯	<1.0	μg/kg	or o	
	苯	<1.9	μg/kg	September 1	
	氯苯	<1.2	μg/kg	2023年2月6日	
	1,2-二氯苯	<1.5	μg/kg		
	1,4-二氯苯	<1.5	μg/kg		
厂界内 T	乙苯	<1.2	μg/kg		
E 123°07'42.8	苯乙烯	<1.1	μg/kg		
N 40°08′16.0	7" 甲苯	<1.3	μg/kg	icac # Joac # Jo	
	间二甲苯+对二甲苯	<1.2	μg/kg		
	邻二甲苯	<1.2	μg/kg	oror y oror or	
	硝基苯	<0.09	mg/kg		
	2-氯苯酚 (2-氯酚)	<0.06	mg/kg	September of the contract of t	
	苯并[a]蒽	<0.1	mg/kg		
	苯并[a]芘	<0.1	mg/kg	or o	
	苯并[b]荧蒽	<0.2	mg/kg		
	苯并[k]荧蒽	<0.1	mg/kg	Para Para Para Para Para Para Para Para	
	ore a constant	<0.1	mg/kg		

JC23069	000		orof a orof	996		第 16 页 共 16 页
项目名称	(2) (2) X	岫岩满族自治县安民废旧机油回收有限 公司年回收500吨废机油建设项目环评监 测			测目的	环评检测
送样时间		2023年2月6日			折时间	2023年2月8-10日
样品来源	- 01°	现场采样			目数量	46 项
		检测	结	果	3595	pror pror
采样点位	ror i	项目	数 据	oron Rege	单位	采样时间
		二苯并[a,h]蒽	<0.1		mg/kg	13 13 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1
厂界内 TI	1010	茚并[1,2,3-cd]芘	<0.1		mg/kg	September 2001
E 123°07'42.85" N 40°08'16.07"		萘	<0.09		mg/kg	2023年2月6日
		苯胺	<0.1	101 266	mg/kg	orac and
		石油烃 (C10~C40)	11		mg/kg	OF STATE OF

注 1: 检测点位见附件 2。


报告编制: 飞线订 审核: 龙龙公 授权签字人: 公 五 金发日期: 乙の分年 2月15日

附件7 土地手续

土地使用者		山山岩湖族自治县八五省幼丁				
座	落		11. 11. 14. 14. 14. 14. 14. 14. 14. 14.	4 小一组		
地	号	015	图	号	100	
Ш	途	二世 和	<u>h</u> ±	也等级	6.0	
使用权	类型	划:	发 终1	上日期		
使	用权而移	! 壱	万路件键位	玖拾冬×	敖肆鱽酚末	
其中共	用分摊	前积				
ń						
Œ				SIL		
n.		山心志游	美包治县土	心管理局	(A):	
0			K	996 41	0 H 16 H	

转让协议书

甲方:徐震 孙 抱. 夕 初 日

甲方系徐凤鸣(已故)的儿子,是徐凤鸣的法定继承人。现经甲乙双方协商同意,甲方将坐落在岫岩县龙潭镇相荣村小卜组的"岫岩八五绢纱厂"【厂房场地变压器及 23.37 亩(15588 平方米)划拨土地】,及其该厂门前 8.65 亩【(5767 平方米)的工业用地和厂房(无土地使用证)】,一次性转让给乙方所有,其具体条款如下:

一、甲方将父亲徐凤鸣所有的上述土地和厂房场地,一次性转让给乙方姜广辉永久性经营使用,转让金为(大写): 贰佰零柒万元整(小写: 2070000 元)。

二、协议签订后,乙方先向甲方交纳定金40万元,余 欠款167万元,于2022年8月30日前一次性给付甲方【待 疫情过后或者双方能见面签字可提前】,成交后定金抵顶转 让款项。

三、本协议签订之日起,具有法律效力,双方均不得反悔;如果甲方违约,收取的定金将双倍返还(80万元);如果乙方反悔,甲方收取的定金不予退还。

四、定金交付后,甲方立即交付上述厂房和场地【四至附图】,乙方收到厂房场地后,可以经营使用或者装修生产,甲方不得以任何借口阻拦乙方在四至范围内搞生产经营,或建设及绿化等工程。

五、 协议签订后, 乙方可以随时要求甲方配合办理土地

相关过户手续,所涉及的所有费用均由乙方自行承担;甲方 无条件配合乙方办理土地登记过户手续;不管乙方是否办理 过户手续,本合同效力不变,甲方均不得以任何借口不予配 合办理手续或刁难乙方(或者不得借口另行收费等)。

六、甲方必须保证所有的手续真实、合法、有效,如有 虚假造成乙方无法办理登记过户手续,甲方将承担违约责任。

七、本协议生效后,均不得违约;双方如有违反本协议的2、3、4、5、6款项,应承担违约责任;除违约方赔偿另一方损失外,还应向守约方支付违约金50万元。

八、本协议出现纠纷, 双方协商解决;协商不成的,可直接向岫岩县人民法院起诉。

九、本协议签订前,该宗土地所发生的(或遗留)纠纷 或债权债务关系,均由甲方自行解决处理;签订后归乙方自 行解决或处理。

十、本协议经双方签字后生效,一式两份,双方各存。

二〇二二年四月四日

附:徐凤鸣名头的所有相关手续原件和土地使用证。

租赁协议书

甲方: 姜广辉

乙方: 高大春(岫岩满族自治县安民废旧机油回收有限公司)

- 一、甲方有一处厂房位于岫岩县龙潭镇(岫岩八五绢纱厂)租给乙方,厂房面积300平方米,占地面积600平方米,租金每年贰万元整(小写20000.00元)。
- 二、协议签订之日起具有法律效力,租金一年一付,租 用时间不限,双方同意均不得反悔,双方如有反悔,违约金 赔付对方伍万元整。

三、本协议如出现纠纷,双方协商解决,协商不成可以直接向岫岩人民法院起诉。

四、本协议经双方签字后生效,一式二份,双方各执一份。

甲方(签字):美广将

乙方 (签字):

签订日期:2002年11月6日

引洋入连建设项目岫岩满族自治县文件项目区推进工作指挥部办公室文件

岫推指办发〔2022〕30 号

关于龙潭镇石湖水库项目"停建令"范围内 新增项目坐标核查的通知

龙潭镇人民政府:

2022年5月24日辽宁省人民政府颁布《辽宁省人民政府关于禁止在引洋入连工程建设占地范围内新增建设项目和迁入人口的通告》(以下简称"停建令")。根据岫岩县人民政府6月8日专题会议精神,要求各有关部门和各级政府在"停建令"规定区域内如有新建和规划项目须上报岫岩县石湖水库工程推进小组,由设计单位复核是否在引洋入连工程建设占地范围内。

经设计单位复核, 岫岩县龙潭镇相荣村安民废旧机油回收有限公司(坐标点: X: 41510461.64; Y: 4443690.83)与《辽宁省人民政府关于禁止在引洋入连工程建设征占地范围内新增建设项目和迁入人口的通告》中引洋入连工程岫岩项目区占地区域不重合, 与引洋入连输水管线不重合, 可以正常实施, 因此, 市场监督管理局可

以正常办理相关手续。

